Course4- Convolutional Neural Networks (CNN)
学习目标
- Understand multiple foundational papers of convolutional neural networks
- Analyze the dimensionality reduction of a volume in a very deep network
- Understand and Implement a Residual network
- Build a deep neural network using Keras
- Implement a skip-connection in your network
- Clone a repository from github and use transfer learning
一. Case Studies
1. Why look at case studies?
2. Classic Networks
3. ResNets
--
4. Why ResNets Work
5. Networks in Networks and 1*1 Convolutions
6. Inception Network Motivation
7. Inception Network
二. Practical advices for using ConvNets
1. Using Open-Source Implementation
建议使用GitHub中的open source资料
2. Transfer Learning
当数据量很小的时候,NG会选择用transfer learning, 如果自身的数据量很大,计算能力很强时,当然也可以从头开始初始化参数。
然而,COMPUTER VISION 通常总是需要借助Transfer learning已经调好的参数,在最后几层,换成自己的全连接层和输出层。
3. Data Augmentation
4. State of Computer
三. Quiz
四. Programming Assignment
1. Program-1 Keras Tutorial- The happy house
2. Program-2 Residual Networks
读论文的顺序:
AlexNet -> VGG-16 -> LeNet
从简单到复杂(阅读难易程度)
网友评论