美文网首页单细胞转录组
单细胞多样本整合之CCA(Seuratv5)

单细胞多样本整合之CCA(Seuratv5)

作者: 小洁忘了怎么分身 | 来源:发表于2024-05-08 15:04 被阅读0次

    前言

    看到一篇单细胞数据挖掘的文章,题为:Establishment of a Prognostic Model of Lung Adenocarcinoma Based on Tumor Heterogeneity

    遂打算拿里面的数据跑一跑,这个数据可以在GSE117570的补充文件里直接下载到。

    1.批量读取数据

    虽然不是标准10X的三个文件,但也可以搞,直接读取为数据框,转换为矩阵,自行创建Seurat对象就可以啦。

    rm(list = ls())
    library(stringr)
    library(Seurat)
    library(dplyr)
    fs = dir("GSE117570_RAW/");fs
    
    ## [1] "GSM3304007_P1_Tumor_processed_data.txt.gz"
    ## [2] "GSM3304011_P3_Tumor_processed_data.txt.gz"
    ## [3] "GSM3304013_P4_Tumor_processed_data.txt.gz"
    
    fs2 = str_split(fs,"_",simplify = T)[,2];fs2
    
    ## [1] "P1" "P3" "P4"
    

    原本是8个文件来着,这篇文章是只拿了其中3个。

    rm(list = ls())
    if(!file.exists("f.Rdata")){
      fs = dir("GSE117570_RAW/")
      f = lapply(paste0("GSE117570_RAW/",fs),function(x){
        Matrix::Matrix(as.matrix(read.table(x,check.names = F)), sparse = T)
      })
      names(f) = fs2
      save(f,file = "f.Rdata")
    }
    load("f.Rdata")
    str(f,max.level = 1)
    
    ## List of 3
    ##  $ P1:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
    ##  $ P3:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
    ##  $ P4:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
    

    这个数据诡异,第一个样本和第三个样本里面有3个相同的barcode,需要处理掉。所以加上下面一段,正常数据里不加哦

    length(intersect(colnames(f$P1),colnames(f$P4)))
    
    ## [1] 3
    
    f$P4 = f$P4[,!(colnames(f$P4) %in% colnames(f$P1))]
    

    3.创建Seurat对象

    library(Seurat)
    library(tidyverse)
    library(patchwork)
    obj = CreateSeuratObject(counts = f,min.cells = 3,min.features = 200)
    names(obj@assays$RNA@layers)
    
    ## [1] "counts.P1" "counts.P3" "counts.P4"
    

    CreateSeuratObject是可以一次容纳多个表达矩阵的,会存放在不同的layers

    4.质控

    obj[["percent.mt"]] <- PercentageFeatureSet(obj, pattern = "^MT-")
    obj[["percent.rp"]] <- PercentageFeatureSet(obj, pattern = "^RP[SL]")
    obj[["percent.hb"]] <- PercentageFeatureSet(obj, pattern = "^HB[^(P)]")
    
    head(obj@meta.data, 3)
    
    ##                       orig.ident nCount_RNA nFeature_RNA percent.mt percent.rp
    ## AAACCTGGTACAGACG-1 SeuratProject       4338         1224   2.512679   18.71830
    ## AAACGGGGTAGCGCTC-1 SeuratProject      11724         2456   2.021494   28.59092
    ## AAACGGGGTCCTCTTG-1 SeuratProject       3353          726   2.117507   55.26394
    ##                    percent.hb
    ## AAACCTGGTACAGACG-1          0
    ## AAACGGGGTAGCGCTC-1          0
    ## AAACGGGGTCCTCTTG-1          0
    

    咔,发现orig.ident 是”SeuratObject”,而不是样本名,所以给它手动改一下了。

    这两种写法都可以得到两个数据分别多少列,即多少个细胞。

    c(ncol(f[[1]]),ncol(f[[2]]))
    
    ## [1] 1832  328
    
    sapply(f, ncol)
    
    ##   P1   P3   P4 
    ## 1832  328 1420
    
    obj@meta.data$orig.ident = rep(names(f),times = sapply(obj@assays$RNA@layers, ncol))
    VlnPlot(obj, 
            features = c("nFeature_RNA",
                         "nCount_RNA", 
                         "percent.mt",
                         "percent.rp",
                         "percent.hb"),
            ncol = 3,pt.size = 0.1, group.by = "orig.ident")
    
    obj = subset(obj,
                 percent.mt < 20 &
                 #nFeature_RNA < 4200 &
                 #nCount_RNA < 18000 &
                 percent.rp <50 #&
                 #percent.hb <1
    )
    

    ok接下来是

    5.降维聚类分群那一套

    obj <- NormalizeData(obj) %>%
      FindVariableFeatures()%>%
      ScaleData(features = rownames(.)) %>%  
      RunPCA(features = VariableFeatures(.))  %>%
      IntegrateLayers(CCAIntegration)%>%
      FindNeighbors(reduction = 'integrated.dr', dims = 1:15)%>%
      FindClusters(resolution = 0.5)%>%
      RunUMAP(reduction = "integrated.dr", dims = 1:15)%>%
      RunTSNE(reduction = "integrated.dr", dims = 1:15)
    
    ## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
    ## 
    ## Number of nodes: 3319
    ## Number of edges: 119327
    ## 
    ## Running Louvain algorithm...
    ## Maximum modularity in 10 random starts: 0.8788
    ## Number of communities: 9
    ## Elapsed time: 0 seconds
    
    UMAPPlot(obj)+TSNEPlot(obj)
    
    obj = JoinLayers(obj)
    obj
    
    ## An object of class Seurat 
    ## 8013 features across 3319 samples within 1 assay 
    ## Active assay: RNA (8013 features, 2000 variable features)
    ##  3 layers present: data, counts, scale.data
    ##  4 dimensional reductions calculated: pca, integrated.dr, umap, tsne
    

    6.SingleR注释

    library(celldex)
    library(SingleR)
    ls("package:celldex")
    
    ## [1] "BlueprintEncodeData"              "DatabaseImmuneCellExpressionData"
    ## [3] "HumanPrimaryCellAtlasData"        "ImmGenData"                      
    ## [5] "MonacoImmuneData"                 "MouseRNAseqData"                 
    ## [7] "NovershternHematopoieticData"
    
    f = "../supp/single_ref/ref_BlueprintEncode.RData"
    if(!file.exists(f)){
      ref <- celldex::BlueprintEncodeData()
      save(ref,file = f)
    }
    ref <- get(load(f))
    library(BiocParallel)
    scRNA = obj
    test = scRNA@assays$RNA$data
    pred.scRNA <- SingleR(test = test, 
                          ref = ref,
                          labels = ref$label.main, 
                          clusters = scRNA@active.ident)
    pred.scRNA$pruned.labels
    
    ## [1] "Monocytes"        "Epithelial cells" "CD8+ T-cells"     "Epithelial cells"
    ## [5] "Macrophages"      "Macrophages"      "Mesangial cells"  "B-cells"         
    ## [9] "B-cells"
    
    #查看注释准确性 
    plotScoreHeatmap(pred.scRNA, clusters=pred.scRNA@rownames, fontsize.row = 9,show_colnames = T)
    
    new.cluster.ids <- pred.scRNA$pruned.labels
    names(new.cluster.ids) <- levels(scRNA)
    levels(scRNA)
    
    ## [1] "0" "1" "2" "3" "4" "5" "6" "7" "8"
    
    scRNA <- RenameIdents(scRNA,new.cluster.ids)
    levels(scRNA)
    
    ## [1] "Monocytes"        "Epithelial cells" "CD8+ T-cells"     "Macrophages"     
    ## [5] "Mesangial cells"  "B-cells"
    
    DimPlot(scRNA, reduction = "tsne",label = T,pt.size = 0.5) + NoLegend()
    

    搞掂~

    相关文章

      网友评论

        本文标题:单细胞多样本整合之CCA(Seuratv5)

        本文链接:https://www.haomeiwen.com/subject/vixjfjtx.html