参考:Ubuntu安装Tensorflow(GPU版)这篇非常好
Ubuntu16.04,python2.7
装CUDA 8.0,CuDNN 6.0,TensorFlow 1.4.0
1 装显卡驱动
NVIDIA官网选择对应版本

2 装CUDA
https://developer.nvidia.com/cuda-release-candidate-download下载CUDA,要注册账号。找到8.0,下载,注意要选择runfile

sudo chmod +x cuda_***.run
sudo ./cuda_***.run
最开始的文档可以ctrl+C跳过,然后除了显卡驱动选择"n",其他都安装。
然后vim ~/.bashrc
,在最后加入:
export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
然后source ~/.bashrc
使之生效
- 验证:
终端输入:nvcc -V
可看到CUDA版本信息尝试运行CUDA自带例子:
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
可以看到输出成功

3 CuDNN
https://developer.nvidia.com/rdp/cudnn-archive找到对应版本:

tar -xzvf cudnn-8.0-linux-x64-v6.0.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
4 TensorFlow
pip安装:
pip install tensorflow-gpu ==1.4.0
查看tensorflow版本,在python环境中输入:
import tensorflow as tf
tf.__version__ (查看版本)
tf.__path__ (查看路径)
5 测试

能看到使用的GPU的型号
网友评论