美文网首页数学和算法
ZXAlgorithm - C5 DFS

ZXAlgorithm - C5 DFS

作者: 左心Chris | 来源:发表于2019-11-25 13:00 被阅读0次

    Outline
    Recursion
    Combination
    Permutation
    Graph
    Non-recursion


    0 Template

    • All for finding all the outcomes must be DFS90% DFS is permutation or combination
    • Three points of recursion: In my view is SDE
      Definition
      Divide
      Exit

    1 Combination: related to time complexity(2^n)

    Subsets
    https://leetcode.com/problems/subsets/
    https://leetcode.com/problems/subsets-ii/
    http://www.lintcode.com/problem/subsets/
    此类问题通用解法:
    https://leetcode.com/problems/subsets/discuss/27281/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partitioning)
    https://www.jiuzhang.com/solution/subsets/#tag-highlight-lang-python
    DC Definition: sorted, start, sublist, result Return: void
    S: List<List<Integer>> results, List<Integer> subset, int[] nums, startIndex
    D: subset.add(nums[i]), dfs, subset.remove(subset.size() - 1)
    E: results.add(new ArrayList<Integer>(subset))
    Subsets II
    https://leetcode.com/problems/subsets-ii/
    https://www.jiuzhang.com/solution/subsets-ii/#tag-highlight-lang-python
    if i > index and nums[i] == nums[i-1]:
    记得一定要大于index,否则子集里面重复的元素都没了
    Combination sum
    https://leetcode.com/problems/combination-sum/
    https://www.jiuzhang.com/solution/combination-sum/#tag-highlight-lang-python
    DC Definition: sorted, start, sublist, target, result Return: void
    S: result, nums, combination, target, startindex
    D: I != index && nums[i] == nums[I - 1] -> continue; target < 0 -> break;
    comb.add(), dfs, removeE: target = 0 -> result.add(), return
    Combination sum II
    http://www.lintcode.com/problem/combination-sum-ii/ http://www.jiuzhang.com/solutions/combination-sum-ii/
    同上多一个target
    Palindrome Partitioning
    https://leetcode.com/problems/palindrome-partitioning/
    http://www.lintcode.com/problem/palindrome-partitioning/ http://www.jiuzhang.com/solutions/palindrome-partitioning/
    https://www.jiuzhang.com/solutions/palindrome-partitioning/#tag-other-lang-python
    其实也可以用上面的模板去写
    S: String s; startIndex; results; subset;
    D: subString = s.substring(startIndex, I + 1); !isPalindrome(subString) -> continue;
    E: startIndex == s.length() -> add and return;

    4 Permutation: related to time complexity(n!)

    Permutations

    Permutations
    https://leetcode.com/problems/permutations/
    http://www.lintcode.com/problem/permutations/ http://www.jiuzhang.com/solutions/permutations/
    DC Definition: unsorted, sublist, result
    S: results; sub; nums;
    D: sub.contains(nums[i]) -> continue
    E: sub.size() = nums.length -> results.add(), return
    Permutations II
    https://leetcode.com/problems/permutations-ii/
    http://www.lintcode.com/problem/permutations-ii/ http://www.jiuzhang.com/solutions/permutations-ii/
    S: results; sub; nums; visited;
    D: visited[i] == 1 || (I != 0 && nums[i] == nums[I -1] && visited[I - 1] == 0) -> continue; the front is still in the front at the result;
    E: sub.size() == nums.length() -> results.add(), return
    N queens
    Change this problem to permutation [] Integer
    S: results; cols; n;
    D: drawChessBoard(); isValid(cols, colnumn)E: col.size() == n -> results.add(), return

    5 Search in a graph

    • BFS: Word Ladder
      D: use bfs to find the shortest path
    • Word Ladder2
      D: use bfs to find the shortest path, 并标注每一个点与起点的最短路径, then use dfs to find all possible paths in reverse direction,保证每一步都路径只加一


    6 Recite

    Tree Traversal
    Preorder, Inorder, Post order,binary search tree iterator
    Search tree iterator is same as inorder traversal

    • Subsets/Combination
      S: results; sub; nums;
      D: sub.contains(nums[i]) -> continue
      E: sub.size() = nums.length -> results.add(), return
    • Permutation
      DC Definition: sorted, start, sublist, result Return: void
      S: List<List<Integer>> results, List<Integer> subset, int[] nums, startIndex
      D: subset.add(nums[i]), dfs, subset.remove(subset.size() - 1)
      E: results.add(new ArrayList<Integer>(subset))
    • Permutations 2
      S: results; sub; nums; visited;
      D: visited[i] == 1 || (I != 0 && nums[i] == nums[I -1] && visited[I - 1] == 0) -> continue; the front is still in the front at the result;
      E: sub.size() == nums.length() -> results.add(), return

    7 Memory

    S

    for() {subset.add() dfs() subset.remove(subset.size() - 1) }
    Use stack for tree traversal

    D

    Permutation and subsets and combination
    Preorder and inorder non-recursive

    相关文章

      网友评论

        本文标题:ZXAlgorithm - C5 DFS

        本文链接:https://www.haomeiwen.com/subject/xetmyctx.html