美文网首页
Y组合子工程推导全过程!

Y组合子工程推导全过程!

作者: elon_wen | 来源:发表于2021-04-29 18:09 被阅读0次

缘起

第一次听说Y组合子,大概是在19年的时候。当时看到这么个东西的时候,就觉得很漂亮。然后,也不知道薅掉多少根头发,终于在最近顿悟了其中的关键步骤,遂把思路整理成文章记录下来。

先简单说一下Y组合子产生的背景吧。

上个世纪三十年代,丘奇发明了Lambda演算(它是后来很多函数式变成的理论基础)。大概是因为信奉如无必要勿增实体,当年老爷子提出的理论里,函数是单参的、也没有名字的概念。

之后,柯里先救了一次场,证明多参函数可以用单参函数等价表示,这就是函数式编程里大名鼎鼎的柯里化。

但是没有函数名,怎么实现递归呢?关键时刻,柯里大神再次救场,证明了不需要名字,也能实现函数的递归。

不过,纯数学的理论证明咱也不会啊,所以,下面就用Scheme语言(基于Lambda的一种Lisp方言)以工程的视角推导出一个Y组合子。

推导过程

(define fact
  (lambda (n)
    (if (< n 2) 1 (* n (fact (- n 1)))))
)

这是一个递归求阶乘的函数。刚才说了,Lambda演算不能存在函数名,也就是说不能用define定义fact。但是,这里其实有一个变通方案:不能定义函数名,但是可以给变量命名,比如n。所以,第一步,我们把fact作为变量传进来。

(define some-name
  (lambda (fact)
    (lambda (n)
      (if (< n 2) 1 (* n (fact (- n 1))))))
)
((some-name 'null) 1)
((some-name (some-name 'null)) 2)
((some-name (some-name (some-name 'null))) 3)
  • 针对第一个式子,其实fact传入的是什么东西都无所谓,因为n = 1,所以不会走到(fact 0),否则fact带入'null,会报错

  • 针对第二个式子,n = 2时,带入得到 (* 2 (...)),其中...的部分就是第一个式子的内容,即((some-name 'null) 1)

  • 针对第三个式子,n = 3时,带入得到 (* 3 (...)),其中...的部分就是第二个式子的内容,即((some-name (some-name 'null)) 2)

其实可以看出来,只要最后的(fact 0)不要真的执行到,就可以算越来越大的n

但是,我们不想 n = 4式,写这么长的式子了,((some-name (some-name (some-name (some-name 'null)))) 4)

所以我们试着做以下这2个替换:

第一步:既然'null都可以让程序跑起来,那替换成some-name是不是也可以?

((some-name some-name) 1)
((some-name (some-name some-name)) 2)
((some-name (some-name (some-name some-name))) 3)

第二步:既然程序最后终止在(fact 0),用some-name带入fact后,实际上是终止在(some-name 0)

那是不是把(fact 0)改写成((fact fact) 0),程序就不会终止了?

(define some-name
  (lambda (fact)
    (lambda (n)
      (if (< n 2) 1 (* n ((fact fact) (- n 1))))))
)
((some-name some-name) 1)

((some-name some-name) 2)
; = (* 2 ((some-name some-name) 1))

((some-name some-name) 3)
; = (* 3 ((some-name some-name) 2))
; = (* 3 (* 2 ((some-name some-name) 1)))

((some-name some-name) 4)
; = (* 4 ((some-name some-name) 3))
; = (* 4 (* 3 ((some-name some-name) 2)))
; = (* 4 (* 3 (* 2 ((some-name some-name) 1))))
(((lambda (g) (g g)) some-name) 4)

可以看到这时候,其实要不要some-name已经没有关系了,完全可以把some-name用它真正的定义塞进去

(
  ; 这其实是一个函数,接受一个参数n,计算n的阶乘
  (
    (lambda (g) (g g))
    ; 这其实是刚才的some-name
    (lambda (fact)
      (lambda (n)
        (if (< n 2) 1 (* n ((fact fact) (- n 1))))))

  )
4)

上面的那个函数成为“穷人的Y组合子”,因为它指针对特定的递归函数生效,在这个例子里是fact

我们希望把fact提出去,让这个函数更通用一些

首先把fact代换为f(这一步实际上只是为了好看)

(
  ; 这其实是一个函数,接受一个参数n,计算n的阶乘
  (
    (lambda (g) (g g))
    ; 这其实是刚才的some-name
    (lambda (f)
      (lambda (n)
        (if (< n 2) 1 (* n ((f f) (- n 1))))))

  )
4)

接着我们把(f f)提出去

(
  (
    (lambda (g) (g g))
    
    (lambda (f)
      (
        ; 这是最初的阶乘函数
        (lambda (fact) 
          (lambda (n)
            (if (< n 2) 1 (* n (fact (- n 1))))))
        ; 用lambda包一下,本质上就是刚才的 (f f)
        ; 这一步主要是因为Scheme是应用序求值
        ; 因此,如果不用lambda让它延迟求值的话,就会提前递归下去
        (lambda (x) ((f f) x))
      )
    )
  )
4)

再把fact相关的提出去

(define some-name
  (lambda (fact)
    (lambda (n)
      (if (< n 2) 1 (* n (fact (- n 1))))))
)

(
  (
    (lambda (g) (g g))
    (lambda (f) (some-name (lambda (x) ((f f) x))))
  )
4)
(
  (
    ; This is Y !!!
    (lambda (fn)
      (
        (lambda (g) (g g))
        (lambda (f) (fn (lambda (x) ((f f) x))))
      )
    )
    some-name
  )
4)

最终我们得到Y组合子

(define Y
  (lambda (fn)
    ((lambda (g) (g g))
    (lambda (f) (fn (lambda (x) ((f f) x)))))))

拿阶乘函数先测试下

((Y some-name) 5)

试试斐波那契数列

(define meta-fib
  (lambda (fib)
    (lambda (n)
      (if (< n 3) 1 (+ (fib (- n 1)) (fib (- n 2)))))))

((Y meta-fib) 10)

相关文章

网友评论

      本文标题:Y组合子工程推导全过程!

      本文链接:https://www.haomeiwen.com/subject/xpvwrltx.html