美文网首页
HIVE,增量更新数据

HIVE,增量更新数据

作者: liuxiaolin | 来源:发表于2021-12-13 23:34 被阅读0次

    生产环境应用场景描述

    每天有很多事实表需要增量同步,在HIVE没有开启事务模式的条件下,需要全表重新写入HDFS中,这在需要巨大的IO时间开销,每天的增量数据占总数据的比列很小,这种方式显得非常低效。
    现在的想法是,考虑利用 INSERT OVER TABLE 语句对分区表进行指定分区覆盖插入,来实现增量更新的效果。
    1,首先创建测试数据集
    • a、全量数据集
    CREATE TABLE `ods.employees_all`( `employee_id` double,
    `first_name` string,
    `last_name` string,
    `email` string,
    `phone_number` string,
    `hire_date` timestamp,
    `job_id` string,
    `salary` double,
    `commission_pct` double,
    `manager_id` double,
    `department_id` int)
    partitioned by (ds string) 
    stored as orcfile;
    

    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(1, 'Eleni', 'Zlotkey', 'EZLOTKEY', '011.44.1344.429018', '2001-01-29 00:00:00', 'SA_MAN', 10500.0, 0.2, 100.0, 80.0, '2001');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(2, 'Mattea', 'Marvins', 'MMARVINS', '011.44.1346.329268', '2001-01-24 00:00:00', 'SA_REP', 7200.0, 0.1, 147.0, 80.0, '2001');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(3, 'David', 'Lee', 'DLEE', '011.44.1346.529268', '2002-02-23 00:00:00', 'SA_REP', 6800.0, 0.1, 147.0, 80.0, '2002');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(4, 'Sundar', 'Ande', 'SANDE', '011.44.1346.629268', '2002-03-24 00:00:00', 'SA_REP', 6400.0, 0.1, 147.0, 80.0, '2002');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(5, 'Amit', 'Banda', 'ABANDA', '011.44.1346.729268', '2003-04-21 00:00:00', 'SA_REP', 6200.0, 0.1, 147.0, 80.0, '2003');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(6, 'shabi', 'shabi', 'shabi', '590.423.4569', '2003-06-25 00:00:00.0', 'IT_PROG', 4800.0, 0.0, 103.0, 60.0, '2003');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(7, 'chunhuo', 'chunhuo', 'chunhuo', '590.423.4560', '2004-02-05 00:00:00.0', 'IT_PROG', 4800.0, 0.0, 103.0, 60.0, '2004');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(8, 'Payam', 'Kaufling', 'PKAUFLIN', '650.123.3234', '2004-05-01 00:00:00.0', 'ST_MAN', 7900.0, 0.0, 100.0, 50.0, '2004');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(9, 'David', 'Bernstein', 'DBERNSTE', '011.44.1344.345268', '2005-03-24 00:00:00.0', 'SA_REP', 9500.0, 0.25, 145.0, 80.0, '2005');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(10, 'Ellen', 'Abel', 'EABEL', '011.44.1644.429267', '2005-05-11 00:00:00.0', 'SA_REP', 11000.0, 0.3, 149.0, 80.0, '2005');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(11, 'Britney', 'Everett', 'BEVERETT', '650.501.2876', '2006-03-03 00:00:00.0', 'SH_CLERK', 3900.0, 0.0, 123.0, 50.0, '2006');
    INSERT INTO ods.employees_all (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(12, 'Samuel', 'McCain', 'SMCCAIN', '650.501.3876', '2006-07-01 00:00:00.0', 'SH_CLERK', 3200.0, 0.0, 123.0, 50.0, '2006');
    
    
    • b、增量数据集
    CREATE TABLE `ods.employees_all`( `employee_id` double,
    `first_name` string,
    `last_name` string,
    `email` string,
    `phone_number` string,
    `hire_date` timestamp,
    `job_id` string,
    `salary` double,
    `commission_pct` double,
    `manager_id` double,
    `department_id` int)
    partitioned by (ds string) 
    stored as orcfile;
    

    INSERT INTO ods.employees_tmp (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(4, 'Sundar_update', 'Sundar_update', 'Sundar_update', '011.44.1346.629268', '2002-03-24 00:00:00', 'SA_REP', 6400.0, 0.1, 147.0, 80.0, '2002');
    INSERT INTO ods.employees_tmp (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(6, 'shabi_update', 'shabi_update', 'shabi_update', '590.423.4569', '2003-06-25 00:00:00.0', 'IT_PROG', 4800.0, 0.0, 103.0, 60.0, '2003');
    INSERT INTO ods.employees_tmp (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(8, 'Payam_update', 'Payam_update', 'Payam_update', '650.123.3234', '2004-05-01 00:00:00.0', 'ST_MAN', 7900.0, 0.0, 100.0, 50.0, '2004');
    INSERT INTO ods.employees_tmp (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(13, 'David_incremental', 'David_incremental', 'David_incremental', '011.44.1344.345268', '2007-03-24 00:00:00.0', 'SA_REP', 9500.0, 0.25, 145.0, 80.0, '2007');
    INSERT INTO ods.employees_tmp (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(14, 'Ellen_incremental', 'Ellen_incremental', 'Ellen_incremental', '011.44.1644.429267', '2007-05-11 00:00:00.0', 'SA_REP', 11000.0, 0.3, 149.0, 80.0, '2007');
    INSERT INTO ods.employees_tmp (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(15, 'Britney_incremental', 'Britney_incremental', 'Britney_incremental', '650.501.2876', '2008-03-03 00:00:00.0', 'SH_CLERK', 3900.0, 0.0, 123.0, 50.0, '2008');
    INSERT INTO ods.employees_tmp (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager_id, department_id, ds) VALUES(16, 'Samuel_incremental', 'Samuel_incremental', 'Samuel_incremental', '650.501.3876', '2008-07-01 00:00:00.0', 'SH_CLERK', 3200.0, 0.0, 123.0, 50.0, '2008');
    
    2,预览测试数据
    • 全量


      全量数据
    • 增量


      增量数据
    3,查看全量表HDFS分区的目录情况
    全量表HDFS分区目录
    4,用INSER OVERWRITE TABLE语句定向更新目标分区

    通过预览表数据,我知道全量表当前有12条数据,6个分区;增量表有7条数据,5个分区,其中2007和2008是新增分区,2002,2003,2004是更新分区。更新语句如下:

    INSERT OVERWRITE TABLE ods.employees_all PARTITION(ds) 
    SELECT t1.* FROM (
    SELECT a.* 
    FROM ods.employees_all a 
    LEFT join ods.employees_tmp b ON a.employee_id = b.employee_id 
    WHERE b.employee_id IS NULL 
      AND EXISTS (SELECT 1 FROM ods.employees_tmp c WHERE a.ds=c.ds )
    UNION ALL 
    SELECT * FROM ods.employees_tmp 
    ) t1
    

    其中表t1的结果集为:


    t1表数据集,各数据行变化或来源图中已做详细标注

    这里需要解释一下的被动更新行,他的意思是这些行本身并不在新增数据集中,但因为其分区与新增数据集中的某些行的分区相同,因此也被命中以便覆盖全量数据集中的目标分区。

    由t1数据集中有共有10条数据,其中新增4条,更新3条,被动更新3条,因此如果INSERT OVERWRITE TABLE语句执行成功后,ods.employees_all中应该有16条数据。

    以下是更新后的全量数据集:


    更新后的全量数据集

    数据如预期的完全一致,说明INSERT OVERWRITE TABLE语句确实是分区表做增量更新的最优选择,这种更新方式逻辑清晰简单,实现方式优雅,绝对是不二之选。

    5,更新后全量表HDFS分区的目录情况
    更新后全量表HDFS分区的目录情况

    可以看到,在HDFS目录中,语句执行成功后,自动创建了新增的4条记录所对应的分区。

    6,总结

    之前一直苦于在HIVE不开启事务的模式下,怎么做增量更新。
    刚接触hive,思维还停留在传统的关系型数据库中,对不能DELETE,UPDATE操作的数仓方式非常不适应,对这种无法更新数据行的数仓深感蛋疼(认识还处于低级水平所致)。经过这番探索后发现,其实hive远比自己想的要强大的多,一般常规性的问题,前人早已给出解决方案,自己的困惑完全是来自于低级的无知。

    上面的这个例子中,如果有数据库日志更新表或原表中有一个可用的update_time时间戳,t1数据集其实可以在sqoop中的query选项使用,导入HDFS后生成一个临时表,然后直接用这个临时表insert overwrite table到目标全量表。

    完。

    相关文章

      网友评论

          本文标题:HIVE,增量更新数据

          本文链接:https://www.haomeiwen.com/subject/ycpnxrtx.html