美文网首页
三、OpenCV+TensorFlow 入门人工智能图像特效,绘

三、OpenCV+TensorFlow 入门人工智能图像特效,绘

作者: LinJF | 来源:发表于2019-09-26 10:54 被阅读0次
    hua1.jpg hua2.jpg

    灰度处理:

    方法一、

    #imread 
    #方法1 imread 
    import cv2
    img0 = cv2.imread('hua1.jpg',0)
    img1 = cv2.imread('hua1.jpg',1)
    print(img0.shape)
    print(img1.shape)
    cv2.imshow('hua',img0)
    cv2.waitKey(0)
    

    方法二、

    #方法2 cvtColor
    import cv2
    img = cv2.imread('hua1.jpg',1)
    dst = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 颜色空间转换 1 data 2 BGR gray
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    方法三、

    # RGB R=G=B = gray  (R+G+B)/3
    
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    dst = np.zeros((height,width,3),np.uint8)
    for i in range(0,height):
        for j in range(0,width):
            (b,g,r) = img[i,j]
            gray = (int(b)+int(g)+int(r))/3
            dst[i,j] = np.uint8(gray)
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    方法四、

    #方法4 gray = r*0.299+g*0.587+b*0.114
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    dst = np.zeros((height,width,3),np.uint8)
    for i in range(0,height):
        for j in range(0,width):
            (b,g,r) = img[i,j]
            b = int(b)
            g = int(g)
            r = int(r)
            gray = r*0.299+g*0.587+b*0.114
            dst[i,j] = np.uint8(gray)
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    算法优化方法四、

    # 1 灰度 最重要 2 基础 3 实时性 
    # 定点-》浮点 +- */ >> 
    # r*0.299+g*0.587+b*0.114
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    # RGB R=G=B = gray  (R+G+B)/3
    dst = np.zeros((height,width,3),np.uint8)
    for i in range(0,height):
        for j in range(0,width):
            (b,g,r) = img[i,j]
            b = int(b)
            g = int(g)
            r = int(r)
            #
            #gray = (r*1+g*2+b*1)/4
            gray = (r+(g<<1)+b)>>2
            dst[i,j] = np.uint8(gray)
    cv2.imshow('dst',dst)
    cv2.waitKey(0)
    

    图片颜色反转

    1.图片灰度反转

    #0-255 255-当前
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst = np.zeros((height,width,1),np.uint8)
    for i in range(0,height):
        for j in range(0,width):
            grayPixel = gray[i,j]
            dst[i,j] = 255-grayPixel
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    2.图片彩色反转

    #RGB 255-R=newR
    #0-255 255-当前
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    dst = np.zeros((height,width,3),np.uint8)
    for i in range(0,height):
        for j in range(0,width):
            (b,g,r) = img[i,j]
            dst[i,j] = (255-b,255-g,255-r)
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    马赛克

    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    for m in range(50,150):
        for n in range(50,100):
            # pixel ->10*10
            if m%10 == 0 and n%10==0:
                for i in range(0,10):
                    for j in range(0,10):
                        (b,g,r) = img[m,n]
                        img[i+m,j+n] = (b,g,r)
    cv2.imshow('hua',img)
    cv2.waitKey(0)
    

    毛玻璃

    import cv2
    import numpy as np
    import random
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    dst = np.zeros((height,width,3),np.uint8)
    mm = 8
    for m in range(0,height-mm):
        for n in range(0,width-mm):
            index = int(random.random()*8)#0-8
            (b,g,r) = img[m+index,n+index]
            dst[m,n] = (b,g,r)
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    图片融合

    # dst  = src1*a+src2*(1-a)
    # hua1.jpg 分辨率大于 hua2.jpg
    import cv2
    import numpy as np
    img0 = cv2.imread('hua2.jpg',1)
    img1 = cv2.imread('hua1.jpg',1)
    imgInfo = img0.shape
    height = imgInfo[0]
    width = imgInfo[1]
    # ROI
    roiH = int(height)
    roiW = int(width)
    img0ROI = img0[0:roiH,0:roiW]
    img1ROI = img1[0:roiH,0:roiW]
    # dst
    dst = np.zeros((roiH,roiW,3),np.uint8)
    dst = cv2.addWeighted(img0ROI,0.5,img1ROI,0.5,0)#add src1*a+src2*(1-a)
    # 1 src1 2 a 3 src2 4 1-a
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    边缘检测

    方法一、

    import cv2
    import numpy as np
    import random
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    cv2.imshow('hua1',img)
    #canny 1 gray 2 高斯 3 canny 
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    imgG = cv2.GaussianBlur(gray,(3,3),0)
    dst = cv2.Canny(img,50,50) #图片卷积——》th
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    方法二、

    import cv2
    import numpy as np
    import random
    import math
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    cv2.imshow('hua1',img)
    # sobel 1 算子模版 2 图片卷积 3 阈值判决 
    # [1 2 1          [ 1 0 -1
    #  0 0 0            2 0 -2
    # -1 -2 -1 ]       1 0 -1 ]
                  
    # [1 2 3 4] [a b c d] a*1+b*2+c*3+d*4 = dst
    # sqrt(a*a+b*b) = f>th
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst = np.zeros((height,width,1),np.uint8)
    for i in range(0,height-2):
        for j in range(0,width-2):
            gy = gray[i,j]*1+gray[i,j+1]*2+gray[i,j+2]*1-gray[i+2,j]*1-gray[i+2,j+1]*2-gray[i+2,j+2]*1
            gx = gray[i,j]+gray[i+1,j]*2+gray[i+2,j]-gray[i,j+2]-gray[i+1,j+2]*2-gray[i+2,j+2]
            grad = math.sqrt(gx*gx+gy*gy)
            if grad>50:
                dst[i,j] = 255
            else:
                dst[i,j] = 0
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    浮雕效果

    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    # newP = gray0-gray1+150
    dst = np.zeros((height,width,1),np.uint8)
    for i in range(0,height):
        for j in range(0,width-1):
            grayP0 = int(gray[i,j])
            grayP1 = int(gray[i,j+1])
            newP = grayP0-grayP1+150
            if newP > 255:
                newP = 255
            if newP < 0:
                newP = 0
            dst[i,j] = newP
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    颜色分格

    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow('hua1',img)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    #rgb -》RGB new “蓝色”
    # b=b*1.5
    # g = g*1.3
    dst = np.zeros((height,width,3),np.uint8)
    for i in range(0,height):
        for j in range(0,width):
            (b,g,r) = img[i,j]
            b = b*1.5
            g = g*1.3
            if b>255:
                b = 255
            if g>255:
                g = 255
            dst[i,j]=(b,g,r)
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    油画特效

    #1 gray 2 7*7 10*10 3 0-255 256 4 640-63 64-127 
    # 3 10 0-63 99 
    # 4 count 5 dst = result
    
    import cv2
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    cv2.imshow('hua1',img)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst = np.zeros((height,width,3),np.uint8)
    for i in range(4,height-4):
        for j in range(4,width-4):
            array1 = np.zeros(8,np.uint8)
            for m in range(-4,4):
                for n in range(-4,4):
                    p1 = int(gray[i+m,j+n]/32)
                    array1[p1] = array1[p1]+1
            currentMax = array1[0]
            l = 0
            for k in range(0,8):
                if currentMax<array1[k]:
                    currentMax = array1[k]
                    l = k
            # 简化 均值
            for m in range(-4,4):
                for n in range(-4,4):
                    if gray[i+m,j+n]>=(l*32) and gray[i+m,j+n]<=((l+1)*32):
                        (b,g,r) = img[i+m,j+n]
            dst[i,j] = (b,g,r)
    cv2.imshow('hua2',dst)
    cv2.waitKey(0)
    

    线段绘制

    import cv2
    import numpy as np
    newImageInfo = (500,500,3)
    dst = np.zeros(newImageInfo,np.uint8)
    # line
    # 绘制线段 1 dst 2 begin 3 end 4 color
    cv2.line(dst,(100,100),(400,400),(0,0,255))
    # 5 line w
    cv2.line(dst,(100,200),(400,200),(0,255,255),20)
    # 6 line type
    cv2.line(dst,(100,300),(400,300),(0,255,0),20,cv2.LINE_AA)
    
    cv2.line(dst,(200,150),(50,250),(25,100,255))
    cv2.line(dst,(50,250),(400,380),(25,100,255))
    cv2.line(dst,(400,380),(200,150),(25,100,255))
    
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    矩形圆形绘制

    import cv2
    import numpy as np
    newImageInfo = (500,500,3)
    dst = np.zeros(newImageInfo,np.uint8)
    #  1 2 左上角 3 右下角 4 5 fill -1 >0 line w
    cv2.rectangle(dst,(50,100),(200,300),(255,0,0),5)
    # 2 center 3 r 
    cv2.circle(dst,(250,250),(50),(0,255,0),2)
    # 2 center 3 轴 4 angle 5 begin 6 end 7 
    cv2.ellipse(dst,(256,256),(150,100),0,0,180,(255,255,0),-1)
    
    points = np.array([[150,50],[140,140],[200,170],[250,250],[150,50]],np.int32)
    print(points.shape)
    points = points.reshape((-1,1,2))
    print(points.shape)
    cv2.polylines(dst,[points],True,(0,255,255))
    cv2.imshow('hua',dst)
    cv2.waitKey(0)
    

    文字图片绘制

    方法一、

    import cv2 
    import numpy as np
    img = cv2.imread('hua1.jpg',1)
    font = cv2.FONT_HERSHEY_SIMPLEX
    cv2.rectangle(img,(100,50),(220,200),(0,255,0),3)
    # 1 dst 2 文字内容 3 坐标 4 5 字体大小 6 color 7 粗细 8 line type
    cv2.putText(img,'this is flow',(50,150),font,1,(100,50,125),2,cv2.LINE_AA)
    cv2.imshow('hua',img)
    cv2.waitKey(0)
    

    方法二、

    #将图片放置在图片中
    import cv2 
    img = cv2.imread('hua1.jpg',1)
    height = int(img.shape[0]*0.2)
    width = int(img.shape[1]*0.2)
    imgResize = cv2.resize(img,(width,height))
    for i in range(0,height):
        for j in range(0,width):
            img[i+100,j+170] = imgResize[i,j]
    cv2.imshow('hua',img)
    cv2.waitKey(0)
    

    相关文章

      网友评论

          本文标题:三、OpenCV+TensorFlow 入门人工智能图像特效,绘

          本文链接:https://www.haomeiwen.com/subject/yrzosctx.html