美文网首页
RGB-D Semantic Segmentation 结果

RGB-D Semantic Segmentation 结果

作者: 挺老实 | 来源:发表于2019-03-26 20:24 被阅读0次

    结果汇总:

    数据库 SUN RGB-D NYU V1 NYU V2
    方法 Pixel Mean mIoU Pixel Mean mIoU Pixel Mean mIoU f.w. Iou 期刊 时间 备注
    RedNet[1] 81.3 % 60.3% 47.8% - - - - - - arxiv 2018
    Multimodal-RNNs[2] - - - 78.89% 75.73% 65.70% 67.90% 54.67% 43.27% arxiv 2018
    S-M Fusion[3] 78.07% 53.93% 40.98% - - - - - - ICIP 2018
    LSDNGF[4] - - - - - - 71.9% 60.7% 45.9% 59.3 % cvpr 2017

    参考文献


    1. Residual Encoder-Decoder Network for indoor RGB-D Semantic Segmentation, https://arxiv.org/abs/1806.01054

    2. Multimodal Recurrent Neural Networks with Information Transfer Layers for Indoor Scene Labeling, https://arxiv.org/abs/1803.04687

    3. SEMANTICS-GUIDED MULTI-LEVEL RGB-D FEATURE FUSION FOR INDOOR SEMANTIC,https://ieeexplore.ieee.org/iel7/8267582/8296222/08296484.pdf

    4. Locality-Sensitive Deconvolution Networks with Gated Fusion for RGB-D Indoor Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Cheng_Locality-Sensitive_Deconvolution_Networks_CVPR_2017_paper.pdf

    相关文章

      网友评论

          本文标题:RGB-D Semantic Segmentation 结果

          本文链接:https://www.haomeiwen.com/subject/zpnnvqtx.html