实现了List
和Deque
接口的双向队列,允许插入null
值
主要属性
transient int size = 0;//大小
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first; //头结点
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last; //尾节点
//Node节点长这样:item实体对象,prev/next指向前一个后一个节点
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
构造函数
主要介绍带参数的构造函数
//c == null 时会抛空指针异常
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
//最终会走到 addAll方法
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);//判断index是否非法 index<0 || index>size
//集合转数组
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node<E> pred, succ;
if (index == size) { //默认会从最后一个节点追加
succ = null;
pred = last;
} else { //自定义index后 会先取到该index对应的对象
succ = node(index);//调用node方法取得index位置下的node
pred = succ.prev;
}
//遍历需要赋值的数组
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);//不要next节点是因为迭代时可以自行设置
if (pred == null)//说明是从头开始
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
//尾部node双向绑定
if (succ == null) {//不是指定index地方插入时,即从尾部插入,没有succ节点
last = pred;
} else {//从指定index插入时,需要与尾部节点连接
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
Node<E> node(int index) {
// assert isElementIndex(index);
//掰成两半儿查找
if (index < (size >> 1)) {//小于size的一半时从头开始查
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {//index大于size的一半时,从后往前找
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
主要方法
1.get
public E get(int index) {
checkElementIndex(index);//检查index界限,会抛下标越界异常
return node(index).item;//遍历取得指定index下的node
}
2.set
public E set(int index, E element) {
//检查下标
checkElementIndex(index);
Node<E> x = node(index);//获取对应的node
E oldVal = x.item;//取出旧item
x.item = element;//赋值新item
return oldVal;
}
- add
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)//index等于size大小时在最后追加
linkLast(element);
else
linkBefore(element, node(index));//在该index直接添加
}
//在尾部连接一个对象
void linkLast(E e) {
final Node<E> l = last;//获得当前的最后一个节点
final Node<E> newNode = new Node<>(l, e, null);//新建一个节点,当前最后一个节点作为prev节点
last = newNode;
if (l == null)//若前一个节点为null list还没有值 则头尾都用该节点
first = newNode;
else
l.next = newNode;//将上一个节点与新节点连接起来
size++;//链表长度+1
modCount++;//操作链表次数+1
}
//官方文档上这么说:在一个非空节点前插入新节点
//但是其实没有做非空校验了
void linkBefore(E e, Node<E> succ) {
// assert succ != null; 非空校验注释掉了
final Node<E> pred = succ.prev;//中间插入 那就是succ的prev节点要重新与新节点的prev连接,新节点的next节点为succ节点
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;//succ节点与新节点连接
if (pred == null)//上一个节点为空时则首尾节点都是该节点
first = newNode;
else
pred.next = newNode;
size++;//链表长度+1
modCount++;//操作次数+1
}
4.remove
除了各种逻辑最后都会用到unlink方法:大致是将需要删除的对象的prev和next节点重新连接起来,在将该对象置空让gc回收
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;//获取该节点下一个节点
final Node<E> prev = x.prev;//获取该节点上一个节点
if (prev == null) {//上一个节点为null时则删除的是头结点 将下一个节点变为头结点
first = next;
} else {
prev.next = next;//prev不为null时 将prev的next改为x的next
x.prev = null;//将x的prev置空 让gc回收
}
if (next == null) {//x的next为null时说明该节点是尾节点
last = prev;
} else {
next.prev = prev;//next的prev挂靠到x的prev
x.next = null;//x的next置空回收
}
x.item = null;//item置空回收
size--;//长度减1
modCount++;//操作次数+1
return element;
}
- clear操作
//清空所有的节点
public void clear() {
// Clearing all of the links between nodes is "unnecessary", but:
// - helps a generational GC if the discarded nodes inhabit
// more than one generation
// - is sure to free memory even if there is a reachable Iterator
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
查询操作
1.indexOf
容易看懂就不解释了,查不到时返回-1,可以查null
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}
队列类的操作
- peek
//获取头节点 但不删除 可以为null
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
- element 和peek一样也是获取头结点 但是若为null会抛空指针异常
- poll 就是队列里的pop操作,即出队
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
4.offer入队
队尾插入元素
public boolean offer(E e) {
return add(e);
}
LinkedList中的迭代器
//该迭代器是快速失败的,如果在创建迭代器后操作了链表(add/remove),不是迭代器中的操作(add/remove),就会抛ConcurrentModificationException异常.
//原因是迭代器中维护了expectedModCount每次操作前都会比较该值与modCount是否一致,不一致就抛,所以在迭代中增删节点时还是要通过迭代器的操作比较好
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;//用作返回节点
private Node<E> next;//记录下一个节点
private int nextIndex;//下一个index
private int expectedModCount = modCount;//初始化期望操作值
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);//若index==size则是尾节点
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;//通过坐标值判断是否有下一个
}
public E next() {
checkForComodification();//校验操作避免使用list的add/remove操作
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();
lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex - 1;
}
//迭代器的删除节点操作
public void remove() {
checkForComodification();//校验操作次数
if (lastReturned == null)//状态校验
throw new IllegalStateException();
Node<E> lastNext = lastReturned.next;//获得当前节点的下一个节点
unlink(lastReturned);//断开当前节点,将当前节点的前后节点相连接 size会减1 modCount会+1
if (next == lastReturned)
next = lastNext;
else
nextIndex--;//坐标值减1
lastReturned = null;
expectedModCount++;//保持与modCount一致
}
//设置当前的节点的item
public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}
//和普通add操作一样 主要是需要将nextIndex和expectedModCount都+1
public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}
//挺方便的迭代 重写下accept方法 可以用lambda表达式
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}
//操作校验
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
网友评论