美文网首页
无标题文章

无标题文章

作者: 楚怀哲 | 来源:发表于2017-08-09 21:49 被阅读0次

    1 数据集介绍:

    虹膜

    150个实例

    萼片长度,萼片宽度,花瓣长度,花瓣宽度
    (sepal length, sepal width, petal length and petal width)

    类别:
    Iris setosa, Iris versicolor, Iris virginica.

    1. 利用Python的机器学习库sklearn: SkLearnExample.py

    from sklearn import neighbors
    from sklearn import datasets

    knn = neighbors.KNeighborsClassifier()

    iris = datasets.load_iris()

    print iris

    knn.fit(iris.data, iris.target)

    predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])

    print predictedLabel

    1. KNN 实现Implementation:

    Example of kNN implemented from Scratch in Python

    import csv
    import random
    import math
    import operator

    def loadDataset(filename, split, trainingSet=[] , testSet=[]):
    with open(filename, 'rb') as csvfile:
    lines = csv.reader(csvfile)
    dataset = list(lines)
    for x in range(len(dataset)-1):
    for y in range(4):
    dataset[x][y] = float(dataset[x][y])
    if random.random() < split:
    trainingSet.append(dataset[x])
    else:
    testSet.append(dataset[x])

    def euclideanDistance(instance1, instance2, length):
    distance = 0
    for x in range(length):
    distance += pow((instance1[x] - instance2[x]), 2)
    return math.sqrt(distance)

    def getNeighbors(trainingSet, testInstance, k):
    distances = []
    length = len(testInstance)-1
    for x in range(len(trainingSet)):
    dist = euclideanDistance(testInstance, trainingSet[x], length)
    distances.append((trainingSet[x], dist))
    distances.sort(key=operator.itemgetter(1))
    neighbors = []
    for x in range(k):
    neighbors.append(distances[x][0])
    return neighbors

    def getResponse(neighbors):
    classVotes = {}
    for x in range(len(neighbors)):
    response = neighbors[x][-1]
    if response in classVotes:
    classVotes[response] += 1
    else:
    classVotes[response] = 1
    sortedVotes = sorted(classVotes.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedVotes[0][0]

    def getAccuracy(testSet, predictions):
    correct = 0
    for x in range(len(testSet)):
    if testSet[x][-1] == predictions[x]:
    correct += 1
    return (correct/float(len(testSet))) * 100.0

    def main():
    # prepare data
    trainingSet=[]
    testSet=[]
    split = 0.67
    loadDataset(r'D:\MaiziEdu\DeepLearningBasics_MachineLearning\Datasets\iris.data.txt', split, trainingSet, testSet)
    print 'Train set: ' + repr(len(trainingSet))
    print 'Test set: ' + repr(len(testSet))
    # generate predictions
    predictions=[]
    k = 3
    for x in range(len(testSet)):
    neighbors = getNeighbors(trainingSet, testSet[x], k)
    result = getResponse(neighbors)
    predictions.append(result)
    print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
    accuracy = getAccuracy(testSet, predictions)
    print('Accuracy: ' + repr(accuracy) + '%')

    main()

    相关文章

      网友评论

          本文标题:无标题文章

          本文链接:https://www.haomeiwen.com/subject/zyfhlxtx.html