论文标题:Direct Preference Optimization: Your Language Model ...[作者空间]
论文标题:Propagation Tree Is Not Deep: Adaptive Graph Contras...[作者空间]
一、概述 大语言模型(LLMs)在预训练的过程中通常会捕捉数据的特征,而这些训练数据通常既包含高质量的也包含低质量...[作者空间]
论文标题:LoRA: Low-Rank Adaptation of Large Language Models论文...[作者空间]
论文标题:Megatron-LM: Training Multi-Billion Parameter Langua...[作者空间]
论文标题:Tree of Thoughts: Deliberate Problem Solving with La...[作者空间]
论文标题:LIMA: Less Is More for Alignment论文链接:https://arxiv.o...[作者空间]
论文标题:Self-Consistency Improves Chain of Thought Reasoning...[作者空间]
论文标题:GPipe: Easy Scaling with Micro-Batch Pipeline Parall...[作者空间]
论文标题:LLaMA: Open and Efficient Foundation Language Models...[作者空间]
论文标题:Training language models to follow instructions with...[作者空间]
论文标题:Chain-of-Thought Prompting Elicits Reasoning in Larg...[作者空间]
论文标题:Pure Transformers are Powerful Graph Learners论文链接:ht...[作者空间]
论文标题:Language Models are Few-Shot Learners论文链接:https://ar...[作者空间]
论文标题:Language Models are Unsupervised Multitask Learners论...[作者空间]
论文标题:Improving Language Understanding by Generative Pre-T...[作者空间]
论文标题:Revisiting Graph Contrastive Learning from the Persp...[作者空间]
论文标题:How Powerful are Graph Neural Networks?论文链接:https://...[作者空间]
论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论...[作者空间]
论文标题:AutoGCL: Automated Graph Contrastive Learning via Le...[作者空间]