美文网首页
可视化折线图matplotlib 以及python3常用內置函數

可视化折线图matplotlib 以及python3常用內置函數

作者: wong小尧 | 来源:发表于2017-10-05 16:53 被阅读0次

    1.折线图

    数据.png
    ##读入数据
    import pandas as pd
    import matplotlib.pyplot as plt
    unrate = pd.read_csv('unrate.csv')
    #用pandas中的方法处理DATE数据
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    ##查看前十二行
    print(unrate.head(12))
    ##绘制前12行的折线图
    first_twelve = unrate[0:12]
    ##画图
    plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
    ##显示图
    plt.show()
    
    折线图1.png
    ##x轴下标看不清,可以旋转x下标45度
    import matplotlib.pyplot as plt
    plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
    plt.xticks(rotation=45)
    plt.show()
    
    折线图2.png
    ##标题,x,y轴标签
    import matplotlib.pyplot as plt
    plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
    plt.xticks(rotation=90)
    plt.xlabel('Month')
    plt.ylabel('Unemployment Rate')
    plt.title('Monthly Unemployment Trends, 1948')
    plt.show()
    
    折线图3.png
    #子图
    import matplotlib.pyplot as plt
    #先构建一个默认的区间
    fig = plt.figure()
    #在区间中添加子图
    ax1 = fig.add_subplot(3,2,1)
    ax2 = fig.add_subplot(3,2,2)
    ax2 = fig.add_subplot(3,2,4)
    plt.show()
    
    子图1.png
    import numpy as np
    import matplotlib.pyplot as plt
    fig = plt.figure()
    #给画图区域一个指定大小为3 * 3,长度 * 宽度
    fig = plt.figure(figsize=(3, 3))
    ax1 = fig.add_subplot(2,1,1)
    ax2 = fig.add_subplot(2,1,2)
    
    ax1.plot(np.random.randint(1,5,5), np.arange(5))
    ax2.plot(np.arange(10)*3, np.arange(10))
    plt.show()
    
    子图2.png
    import matplotlib.pyplot as plt
    unrate['MONTH'] = unrate['DATE'].dt.month
    unrate['MONTH'] = unrate['DATE'].dt.month
    fig = plt.figure(figsize=(6,3))
    
    plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'], c='red')
    plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'], c='blue')
    
    plt.show()
    
    颜色.png
    import matplotlib.pyplot as plt
    fig = plt.figure(figsize=(10,6))
    colors = ['red', 'blue', 'green', 'orange', 'black']
    for i in range(5):
        start_index = i*12
        end_index = (i+1)*12
        subset = unrate[start_index:end_index]
        plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i])
        
    plt.show()
    
    多折线图.png
    fig = plt.figure(figsize=(10,6))
    colors = ['red', 'blue', 'green', 'orange', 'black']
    for i in range(5):
        start_index = i*12
        end_index = (i+1)*12
        subset = unrate[start_index:end_index]
        label = str(1948 + i)
        plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i], label=label)
    plt.legend(loc='upper left')
    plt.xlabel('Month, Integer')
    plt.ylabel('Unemployment Rate, Percent')
    plt.title('Monthly Unemployment Trends, 1948-1952')
    
    plt.show()
    
    标签

    python3 函數測速

    import time  
    from functools import reduce
    
    #循環map和列表生成式速度比較
    t1 = time.time()
    #循环
    a = []
    array = range(100000)
    for i in array:
        a.append(2*(i+1))
    print (a)
    t2 = time.time()
    
    t3 = time.time()
    #map函数
    array = range(100000)
    a = map(lambda x: 2*(x+1), array)
    #python2中map直接返回一个列表
    #python3中map改成了惰性函数,想要返回列表需要用list转换
    print (list(a))
    t4 = time.time()
    
    t5= time.time()
    #列表推导
    array = range(100000)
    a = [2*(x+1) for x in array]
    print (a)
    t6= time.time()
    
    
    
    #循環和reduce速度比較
    t7= time.time()
    a = 0
    array = range(100000)
    for i in range(len(array)):
        a = a + array[i]
    t8= time.time() 
    
    t9= time.time()
    array = range(100000)
    a = reduce(lambda x,y: x+y , array)
    t10= time.time() 
    
    
    
    timefor = t2 - t1
    timemap = t4 - t3
    timelist = t6 - t5
    timeforsum = t8 - t7
    timereduce = t10 - t9
    
    
    print ('for:',timefor,'map',timemap,'list',timelist,'forsum',timeforsum,'reduce',timereduce)
    
    #結果:for: 0.09300518035888672 
    #map 0.08100461959838867 
    #list 0.0630037784576416
    #結果:forsum 0.18001055717468262 
    #reduce 0.0390019416809082
    

    可以看出 循環和map效率相似,map略快,列表生成式速度最快。累加計算 循環明顯慢與reduce。

    相关文章

      网友评论

          本文标题:可视化折线图matplotlib 以及python3常用內置函數

          本文链接:https://www.haomeiwen.com/subject/agscyxtx.html