美文网首页SAS学习笔记单细胞
Seurat使用教程(v3.0)

Seurat使用教程(v3.0)

作者: xianmao123 | 来源:发表于2019-06-20 15:58 被阅读0次

    Seurat使用教程(v3.0)

    Seurat是一个分析单细胞转录组数据的R包,用于QC,分析和探索单细胞RNA-seq数据,相关资料如下:

    参考教程
    测试数据

    具体流程如下:

    graph TD
    A[安装Seurat包] -->|加载Seurat包| B(读入10X数据)
    B --> C(QC及前处理) 
    C --> |筛选出符合要求的数据| D(标准化数据)
    D --> E(PCA分析) 
    E--> F(t-SNE降维分析或者UMAP降维分析)
    F -->G(细胞聚类)
    

    Seurat包安装

    在linux或者windows中的Rstudio均可以安装运行,与安装其他R包一致。

    install.packages("Seurat")
    install.packages("dplyr")
    

    数据导入

    library(Seurat)
    library(dplyr)
    cip <- readRDS("subset_cip.rds")
    cip1 <-CreateSeuratObject(counts = cip,project = "CIPs",min.cells = 3,min.features = 200)
    cip1[["percent.mt"]] <- PercentageFeatureSet(object = cip1, pattern = "^mt-")
    head(x = cip1@meta.data, 5)
    
    pbmc
    

    结果如下

     orig.ident  nCount_RNA nFeature_RNA percent.mt
    TTAGTTCAGCTGATAA-1       CIPs       23206          4473               
    3.412910
    CTAGCCTAGAGACGAA-1       CIPs       9548           2803               
    4.733976
    GTGAAGGGTCTAAAGA-1       CIPs      12292          3179               
    4.905630
    CATCCACTCAATAAGG-1       CIPs       14012          3501               
    5.338281
    TTCCCAGCACTGCCAG-1       CIPs       14704          3604               
    5.597116
    

    QC及预处理

    预处理该步骤非必须,可根据实际情况作出相应变动;其目的就是根据基因的表达量、细胞中及线粒体基因表达量等特征,对细胞进行一个初步的过滤,就是根据可视化结果指定一个阈值,达到或者超过设定的阈值才进入到下游后续分析,阈值设定常用的几个指标:nGene、nUMI、mito.percent

    VlnPlot(object = cip1, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),ncol = 3)
    
    1.png

    根据图片选定阈值排除一些离群值后

      plot1 <- FeatureScatter(object = cip1, feature1 = "nCount_RNA", feature2 = "percent.mt")
            plot2 <- FeatureScatter(object = cip1, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
        CombinePlots(plots = list(plot1, plot2))
    
    2.png

    标准化处理

    归一化

      cip1 <- subset(x = cip1, subset = nFeature_RNA > 1000 & nFeature_RNA < 5800 & percent.mt < 13)
        cip1 <- NormalizeData(object = cip1, normalization.method = "LogNormalize", scale.factor = 10000)
    

    缩放数据及线性降维

        all.genes <- rownames(x = cip1)
        cip2<- ScaleData(object =cip1, features = all.genes)
        cip2<- RunPCA(object = cip2, features = VariableFeatures(object = cip2))
    VizDimLoadings(object = cip2, dims = 1:2, reduction = "pca")
    
    3.png

    热图绘制

    DimHeatmap(object = cip2, dims = 1, cells = 500, balanced = TRUE)
    
    4.png
    DimHeatmap(object = cip2, dims = 1:15, cells = 500, balanced = TRUE)
    
    5.png

    维数选择

    cip2 <- JackStraw(object = cip2, num.replicate = 100)
    cip2 <- ScoreJackStraw(object = cip2, dims = 1:20)
    JackStrawPlot(object = cip2, dims = 1:15)
    ElbowPlot(object = pbmc)
    
    6.png

    细胞聚类

    cip2 <- FindNeighbors(object = cip2, dims = 1:10)
    cip2 <- FindClusters(object = cip2, resolution = 0.5)
    head(x = Idents(object = cip2), 5)
    

    t-SNE可视化结果

    cip2 <- RunTSNE(object = cip2, dims = 1:10)TSNEPlot(object = cip2)
    
    7.png

    具体说明后续继续补充。

    相关文章

      网友评论

        本文标题:Seurat使用教程(v3.0)

        本文链接:https://www.haomeiwen.com/subject/ailjqctx.html