美文网首页
4.2 scikit-learn中的机器学习算法的封装

4.2 scikit-learn中的机器学习算法的封装

作者: 逆风的妞妞 | 来源:发表于2019-06-27 18:04 被阅读0次

    4.2 scikit-learn中的机器学习算法的封装

    新建文件夹myscript,创建KNN.py

    import numpy as np
    from math import sqrt
    from collections import Counter
    
    def KNN_classify(k, X_train, y_train, x):
        assert 1 <= k <= X_train.shape[0], "k must be valid"
        assert X_train.shape[0] == y_train.shape[0],  "the size of X_train must equal to the size of y_train"
        assert X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train"
    
        distances = [sqrt(np.sum((x_train - x)**2)) for x_train in X_train]
        nearest = np.argsort(distances)
    
        topK_y = [y_train[i] for i in nearest[:k]]
        votes = Counter(topK_y)
    
        return votes.most_common(1)[0][0]
    

    在jupyter中调用封装好的knn方法,我们可以看到运行结果和上一小节一样。

    import numpy as np
    import matplotlib.pyplot as plt
    
    raw_data_x = [[3.423749247, 2.334567896],
                  [3.110073483, 1.745697878],
                  [1.347946498, 3.368464565],
                  [3.582294042, 4.679565478],
                  [2.280364646, 2.866699256],
                  [7.423454548, 4.696522875],
                  [5.745051465, 3.533989946],
                  [9.172456464, 2.051111010],
                  [7.792783481, 3.424088941],
                  [7.939820184, 0.791637231]
                ]
    raw_data_y = [0,0,0,0,0,1,1,1,1,1]
    
    X_train = np.array(raw_data_x)
    y_train = np.array(raw_data_y)
    
    x = np.array([8.093607318, 3.3657315144])
    %run myscript/KNN.py
    predict_y = KNN_classify(6, X_train, y_train, x)
    predict_y
    
    image.png

    经过这个示例,我们对机器学习的流程有了更专业的认识。


    image.png

    但是,KNN算法并没有得到一个模型,因此,可以近似说kNN算法是一个不需要训练过程的算法。换句话说,输入样例可以直接送给训练数据集,在训练数据集上直接找到最近的点。其实k近邻算法是非常特殊的,我们也可以认为训练数据集就是模型本身。

    使用scikit-learn中的kNN

    # 加载相关的算法
    from sklearn.neighbors import KNeighborsClassifier
    # 创建算法对应的实例,传入参数
    kNN_classifier = KNeighborsClassifier(n_neighbors=6)
    # 拟合训练数据集
    kNN_classifier.fit(X_train, y_train)
    # 样本预测
    kNN_classifier.predict([x])
    

    程序报错:


    image.png

    因为之前的python版本支持传入的参数为一维数组,但是后来为了统一接口,传入的必须是一个矩阵,因此,我们需要将x转换成一个矩阵的形式。在前面代码中可以看到,我直接加入了一个中括号就可以通过编译,当然我们也可以利用如下方式:

    X_predict = x.reshape(1, -1)
    kNN_classifier.predict(X_predict)
    

    正常运行结果如下:我们可以看出和我们之前的结果一致。


    image.png

    重新整理我们的KNN算法

    新建文件kNN2.py

    import numpy as np
    from math import sqrt
    from collections import Counter
    
    class KNNClassfier:
        def __init__(self, k):
            # 初始化kNN分类器
            assert k >= 1, "k must be valid"
            self.k = k
            # _表示私有
            self._X_train = None
            self._y_train = None
    
        def fit(self, X_train, y_train):
            # 根据训练集训练KNN分类器
            assert X_train.shape[0] == y_train.shape[0], \
                "the size of X_train must equal to the size of y_train"
            assert self.k <= X_train.shape[0], \
                "the size of X_train must be at least k."
    
            self._X_train = X_train
            self._y_train = y_train
            return self
        
        def predict(self, X_predict):
            # 给定待预测数据集X_predict, 返回表示X_predict的结果向量
            assert self._X_train is not None and self._y_train is not None, \
                "must fit before predict!"
            assert X_predict.shape[1] == self._X_train.shape[1], \
                "the feature number of X_predict must be equal to X_train"
    
            y_predict = [self._predict(x) for x in X_predict]
            return np.array(y_predict)
    
        def _predict(self, x):
            # 给定单个待预测数据x,返回x的预测结果值
            assert x.shape[0] == self._X_train.shape[1],\
                "the feature number of x must be equal to X_train"
            distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
            nearest = np.argsort(distances)
    
            topK_y = [self._y_train[i] for i in nearest[:self.k]]
            votes = Counter(topK_y)
    
            return votes.most_common(1)[0][0]
    
        def __repr__(self):
            return "KNN(k=%d)" %self.k
    

    在jupyter中输入下面代码进行测试

    %run myscript/kNN2.py
    knn_clf = KNNClassfier(k=6)
    knn_clf.fit(X_train, y_train)
    X_predict = x.reshape(1, -1)
    y_predict = knn_clf.predict(X_predict)
    y_predict[0]
    

    运行结果和上面一样,输出结果1。

    相关文章

      网友评论

          本文标题:4.2 scikit-learn中的机器学习算法的封装

          本文链接:https://www.haomeiwen.com/subject/ajfdcctx.html