美文网首页
kylin架构

kylin架构

作者: 西二旗老司机 | 来源:发表于2019-04-23 15:11 被阅读0次
    image.png

    首先来看离线构建部分。从图中可以看出,左侧为数据源,目前Kylin默认的数据源是Apache Hive,保存着待分析的用户数据。根据元数据的定义,构建引擎从数据源抽取数据,并构建Cube。数据以关系表的形式输入,并且必须符合星形模型。构建技术主要为MapReduce(Spark目前在beta版本)。构建后的Cube保存在右侧存储引擎中,目前Kylin默认的存储为Apache HBase。
    完成离线构建后,用户可以从上方的查询系统发送SQL进行查询分析。Kylin提供了RESTful API、JDBC/ODBC接口供用户调用。无论从哪个接口进入,SQL最终都会来到REST服务层,再转交给查询引擎进行处理。查询引擎解析SQL,生成基于关系表的逻辑执行计划,然后将其转译为基于Cube的物理执行计划,最后查询预计算生成的Cube并产生结果。整个过程不会访问原始数据源。如果用户提交的查询语句未在Kylin中预先定义,Kylin会返回一个错误。
    值得一提的是,Kylin对数据源、执行引擎和Cube存储三个核心模块提取出了抽象层,这意味着这三个模块可以被任意地扩展和替换。比如可以使用Spark替代MapReduce作为Cube的构建引擎,使用Cassandra替代HBase作为Cube计算后数据的存储等。良好的扩展性使得Kylin可以在这个技术发展日新月异的时代方便地使用更先进的技术替代现有技术,做到与时俱进,也使用户可以针对自己的业务特点对Kylin进行深度定制。
    Apache Kylin的这种架构使得它拥有许多非常棒的特性:

    SQL接口:
    Kylin主要的对外接口就是以SQL的形式提供的。SQL简单易用的特性极大地降低了Kylin的学习成本,不论是数据分析师还是Web开发程序员都能从中收益。
    支持海量数据集
    不论是Hive、SparkSQL,还是Impala、Presto,都改变不了这样一个事实:查询时间随着数据量的增长而线性增长。而Apache Kylin使用预计算技术打破了这一点。Kylin在数据集规模上的局限性主要取决于维度的个数和基数,而不是数据集的大小,所以Kylin能更好地支持海量数据集的查询。
    亚秒级响应
    同样受益于预计算技术,Kylin的查询速度非常快,因为复杂的连接、聚合等操作都在Cube的构建过程中已经完成了。
    水平扩展
    Apache Kylin同样可以使用集群部署方式进行水平扩展。但部署多个节点只能提高Kylin处理查询的能力,而不能提升它的预计算能力。
    可视化集成
    Apache Kylin提供了ODBC/JDBC接口和RESTful API,可以很方便地与Tableau等数据可视化工具集成。数据团队也可以在开放的API上进行二次开发。

    相关文章

      网友评论

          本文标题:kylin架构

          本文链接:https://www.haomeiwen.com/subject/ajvvgqtx.html