美文网首页
PyTorch1.0中的torch.cat的用法

PyTorch1.0中的torch.cat的用法

作者: top_小酱油 | 来源:发表于2019-04-08 15:29 被阅读0次
    1. 字面理解:torch.cat是将两个张量(tensor)拼接在一起,cat是concatnate的意思,即拼接,联系在一起。

    PS:使用torch.cat((A,B),dim)时,除拼接维数dim数值可不同外其余维数数值需相同,方能对齐!!!!!!!

    1. 例子理解
    >>> import torch
    >>> A=torch.ones(2,3) #2x3的张量(矩阵)                                     
    >>> A
    tensor([[ 1.,  1.,  1.],
            [ 1.,  1.,  1.]])
    >>> B=2*torch.ones(4,3)#4x3的张量(矩阵)                                    
    >>> B
    tensor([[ 2.,  2.,  2.],
            [ 2.,  2.,  2.],
            [ 2.,  2.,  2.],
            [ 2.,  2.,  2.]])
    >>> C=torch.cat((A,B),0)#按维数0(行)拼接
    >>> C
    tensor([[ 1.,  1.,  1.],
             [ 1.,  1.,  1.],
             [ 2.,  2.,  2.],
             [ 2.,  2.,  2.],
             [ 2.,  2.,  2.],
             [ 2.,  2.,  2.]])
    >>> C.size()
    torch.Size([6, 3])
    >>> D=2*torch.ones(2,4) #2x4的张量(矩阵)
    >>> C=torch.cat((A,D),1)#按维数1(列)拼接
    >>> C
    tensor([[ 1.,  1.,  1.,  2.,  2.,  2.,  2.],
            [ 1.,  1.,  1.,  2.,  2.,  2.,  2.]])
    >>> C.size()
    torch.Size([2, 7])
    

    上面给出了两个张量A和B,分别是2行3列,4行3列。即他们都是2维张量。因为只有两维,这样在用torch.cat拼接的时候就有两种拼接方式:按行拼接和按列拼接。即所谓的维数0和维数1.

    C=torch.cat((A,B),0)就表示按维数0(行)拼接A和B,也就是竖着拼接,A上B下。此时需要注意:列数必须一致,即维数1数值要相同,这里都是3列,方能列对齐。拼接后的C的第0维是两个维数0数值和,即2+4=6.

    C=torch.cat((A,B),1)就表示按维数1(列)拼接A和B,也就是横着拼接,A左B右。此时需要注意:行数必须一致,即维数0数值要相同,这里都是2行,方能行对齐。拼接后的C的第1维是两个维数1数值和,即3+4=7.

    从2维例子可以看出,使用torch.cat((A,B),dim)时,除拼接维数dim数值可不同外其余维数数值需相同,方能对齐。

    3.实例

    在深度学习处理图像时,常用的有3通道的RGB彩色图像及单通道的灰度图。张量size为cxhxw,即通道数x图像高度x图像宽度。在用torch.cat拼接两张图像时一般要求图像大小一致而通道数可不一致,即h和w同,c可不同。当然实际有3种拼接方式,另两种好像不常见。比如经典网络结构:U-Net


    U-net

    里面用到4次torch.cat,其中copy and crop操作就是通过torch.cat来实现的。可以看到通过上采样(up-conv 2x2)将原始图像h和w变为原来2倍,再和左边直接copy过来的同样h,w的图像拼接。这样做,可以有效利用原始结构信息。

    4.总结

    使用torch.cat((A,B),dim)时,除拼接维数dim数值可不同外其余维数数值需相同,方能对齐。

    相关文章

      网友评论

          本文标题:PyTorch1.0中的torch.cat的用法

          本文链接:https://www.haomeiwen.com/subject/ajxpiqtx.html