(1)map reduce的类型
map: (k1,v1) -> list(k2,v2)
combiner:(k2,list(v2)) ->(k2,v2)
reduce: (k2,list(v2)) -> list(k3,v3)
streaming的分割符属性 inputformat类的层次结构
有的应用程序可能不希望文件被切分,而是用一个mapper完整处理每一个输入文件。
避免切分用FileInputFormat的具体子类,可以重写isSplitable
// == NonSplittableTextInputFormat
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
public class NonSplittableTextInputFormat extends TextInputFormat {
@Override
protected boolean isSplitable(JobContext context, Path file) {
return false;
}
}
把整个文件作为一条记录来处理
// 把整个文件作为一条记录的inputformat
// cc WholeFileInputFormat An InputFormat for reading a whole file as a record
import java.io.IOException;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.*;
//vv WholeFileInputFormat
public class WholeFileInputFormat
extends FileInputFormat<NullWritable, BytesWritable> {
@Override
protected boolean isSplitable(JobContext context, Path file) {
return false;
}
@Override
public RecordReader<NullWritable, BytesWritable> createRecordReader(
InputSplit split, TaskAttemptContext context) throws IOException,
InterruptedException {
WholeFileRecordReader reader = new WholeFileRecordReader();
reader.initialize(split, context);
return reader;
}
}
//^^ WholeFileInputFormat
RecordReader将整个文件作为一条记录处理
// cc WholeFileRecordReader The RecordReader used by WholeFileInputFormat for reading a whole file as a record
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
//vv WholeFileRecordReader
class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> {
private FileSplit fileSplit;
private Configuration conf;
private BytesWritable value = new BytesWritable();
private boolean processed = false;
@Override
public void initialize(InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException {
this.fileSplit = (FileSplit) split;
this.conf = context.getConfiguration();
}
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
if (!processed) {
byte[] contents = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(conf);
FSDataInputStream in = null;
try {
in = fs.open(file);
IOUtils.readFully(in, contents, 0, contents.length);
value.set(contents, 0, contents.length);
} finally {
IOUtils.closeStream(in);
}
processed = true;
return true;
}
return false;
}
@Override
public NullWritable getCurrentKey() throws IOException, InterruptedException {
return NullWritable.get();
}
@Override
public BytesWritable getCurrentValue() throws IOException,
InterruptedException {
return value;
}
@Override
public float getProgress() throws IOException {
return processed ? 1.0f : 0.0f;
}
@Override
public void close() throws IOException {
// do nothing
}
}
//^^ WholeFileRecordReader
将若干个小文件打包成顺序文件的MapReduce程序
// cc SmallFilesToSequenceFileConverter A MapReduce program for packaging a collection of small files as a single SequenceFile
import java.io.IOException;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
//vv SmallFilesToSequenceFileConverter
public class SmallFilesToSequenceFileConverter extends Configured
implements Tool {
static class SequenceFileMapper
extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
private Text filenameKey;
@Override
protected void setup(Context context) throws IOException,
InterruptedException {
InputSplit split = context.getInputSplit();
Path path = ((FileSplit) split).getPath();
filenameKey = new Text(path.toString());
}
@Override
protected void map(NullWritable key, BytesWritable value, Context context)
throws IOException, InterruptedException {
context.write(filenameKey, value);
}
}
@Override
public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;
}
job.setInputFormatClass(WholeFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(BytesWritable.class);
job.setMapperClass(SequenceFileMapper.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(), args);
System.exit(exitCode);
}
}
// ^^ SmallFilesToSequenceFileConverter
outputFormat类的层析结构
数据分割
MultipleOutputs类可以将数据分割成多个文件,这些文件的名称源于输出的键和值或任意字符串。
// == PartitionByStationYearUsingMultipleOutputs
// MultipleOutputs按照气象站划分数据
import java.io.IOException;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class PartitionByStationYearUsingMultipleOutputs extends Configured
implements Tool {
static class StationMapper
extends Mapper<LongWritable, Text, Text, Text> {
private NcdcRecordParser parser = new NcdcRecordParser();
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
parser.parse(value);
context.write(new Text(parser.getStationId()), value);
}
}
static class MultipleOutputsReducer
extends Reducer<Text, Text, NullWritable, Text> {
private MultipleOutputs<NullWritable, Text> multipleOutputs;
private NcdcRecordParser parser = new NcdcRecordParser();
@Override
protected void setup(Context context)
throws IOException, InterruptedException {
multipleOutputs = new MultipleOutputs<NullWritable, Text>(context);
}
// vv PartitionByStationYearUsingMultipleOutputs
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
for (Text value : values) {
parser.parse(value);
String basePath = String.format("%s/%s/part",
parser.getStationId(), parser.getYear());
multipleOutputs.write(NullWritable.get(), value, basePath);
//在MultipleOutputs的write方法指定中指定的基本路径相对于输出路径进行解释,因为它可以包含文件路径分隔符(/),创建任意深度的子目录是可能的。
}
}
// ^^ PartitionByStationYearUsingMultipleOutputs
@Override
protected void cleanup(Context context)
throws IOException, InterruptedException {
multipleOutputs.close();
}
}
@Override
public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;
}
job.setMapperClass(StationMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setReducerClass(MultipleOutputsReducer.class);
job.setOutputKeyClass(NullWritable.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new PartitionByStationYearUsingMultipleOutputs(),
args);
System.exit(exitCode);
}
}
网友评论