美文网首页
Metaneighbor - 探究不同研究中的细胞亚类的相关性

Metaneighbor - 探究不同研究中的细胞亚类的相关性

作者: 重拾生活信心 | 来源:发表于2024-04-24 10:33 被阅读0次

    MetaNeighbor/Documentation.md at master · gillislab/MetaNeighbor · GitHub

    input & output
    #BiocManager::install("MetaNeighbor")
    # https://github.com/gillislab/MetaNeighbor/blob/master/Documentation.md
    
    library(MetaNeighbor)
    library(SummarizedExperiment)
    data(mn_data)
      head(mn_data@colData)
      table(mn_data$study_id,mn_data$cell_type)
    # sample_id {~ single cell}    study_id   cell_type
    # 探究不同研究中的细胞亚类的相关性 【group by study_id+cell_type】
    data(GOmouse)
    
    # 
    # Part 1: Supervised MetaNeighbor
    
    AUROC_scores = MetaNeighbor(dat = mn_data,
                                experiment_labels = as.numeric(factor(mn_data$study_id)),
                                celltype_labels = metadata(colData(mn_data))[["cell_labels"]],
                                genesets = GOmouse,
                                bplot = TRUE)
    head(AUROC_scores)
    
    # Part 2: MetaNeighbor for Data Exploration
    
    # library(MetaNeighbor)
    # data(mn_data)
    var_genes = variableGenes(dat = mn_data, exp_labels = mn_data$study_id)
    length(var_genes)
    head(var_genes)
    celltype_NV = MetaNeighborUS(var_genes = var_genes,
                                 dat = mn_data,
                                 study_id = mn_data$study_id,
                                 cell_type = mn_data$cell_type)
    top_hits = topHits(cell_NV = celltype_NV,
                       dat = mn_data,
                       study_id = mn_data$study_id,
                       cell_type = mn_data$cell_type,
                       threshold = 0.9)
    top_hits
    cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
    breaks = seq(0, 1, length=101)
    gplots::heatmap.2(celltype_NV,
                      margins=c(8,8),
                      keysize=1,
                      key.xlab="AUROC",
                      key.title="NULL",
                      trace = "none",
                      density.info = "none",
                      col = cols,
                      breaks = breaks,
                      offsetRow=0.1,
                      offsetCol=0.1,
                      cexRow = 0.7,
                      cexCol = 0.7)
    ## Run MetaNeighbor for data exploration
    # Once we have a set of highly variable genes, we can simply run an exploratory version of MetaNeighbor using the function:
    
    
    celltype_NV = MetaNeighborUS(var_genes = var_genes,
                                 dat = mn_data,
                                 study_id = mn_data$study_id,
                                 cell_type = mn_data$cell_type)
    
    cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
    breaks = seq(0, 1, length=101)
    gplots::heatmap.2(celltype_NV,
                      margins=c(8,8),
                      keysize=1,
                      key.xlab="AUROC",
                      key.title="NULL",
                      trace = "none",
                      density.info = "none",
                      col = cols,
                      breaks = breaks,
                      offsetRow=0.1,
                      offsetCol=0.1,
                      cexRow = 0.7,
                      cexCol = 0.7)
    
    #Identify reciprocal top hits and high scoring cell type pairs
    top_hits = topHits(cell_NV = celltype_NV,
                       dat = mn_data,
                       study_id = mn_data$study_id,
                       cell_type = mn_data$cell_type,
                       threshold = 0.9)
    top_hits
    
    

    相关文章

      网友评论

          本文标题:Metaneighbor - 探究不同研究中的细胞亚类的相关性

          本文链接:https://www.haomeiwen.com/subject/akfgxjtx.html