发下cs231n关于反向传播的讲解特别好,尤其是代码实现部分。一个复杂的式子的导数可能很复杂,但是利用链式法则就可以将问题分解为一个又一个局部梯度的堆叠(staged)
x = 3 # example values
y = -4
# forward pass
sigy = 1.0 / (1 + math.exp(-y)) # sigmoid in numerator #(1)
num = x + sigy # numerator #(2)
sigx = 1.0 / (1 + math.exp(-x)) # sigmoid in denominator #(3)
xpy = x + y #(4)
xpysqr = xpy**2 #(5)
den = sigx + xpysqr # denominator #(6)
invden = 1.0 / den #(7)
f = num * invden # done! #(8)
# backprop f = num * invden
dnum = invden # gradient on numerator #(8)
dinvden = num #(8)
# backprop invden = 1.0 / den
dden = (-1.0 / (den**2)) * dinvden #(7)
# backprop den = sigx + xpysqr
dsigx = (1) * dden #(6)
dxpysqr = (1) * dden #(6)
# backprop xpysqr = xpy**2
dxpy = (2 * xpy) * dxpysqr #(5)
# backprop xpy = x + y
dx = (1) * dxpy #(4)
dy = (1) * dxpy #(4)
# backprop sigx = 1.0 / (1 + math.exp(-x))
dx += ((1 - sigx) * sigx) * dsigx # Notice += !! See notes below #(3)
# backprop num = x + sigy
dx += (1) * dnum #(2)
dsigy = (1) * dnum #(2)
# backprop sigy = 1.0 / (1 + math.exp(-y))
dy += ((1 - sigy) * sigy) * dsigy #(1)
我们对前向传播时产生每个变量(sigy, num, sigx, xpy, xpysqr, den, invden)进行回传。我们会有同样数量的变量,但是都以d开头,用来存储对应变量的梯度。注意在反向传播的每一小块中都将包含了表达式的局部梯度,然后根据使用链式法则乘以上游梯度。
当前梯度 = 局部梯度 * 上游梯度
讨论了分段计算在反向传播的实现中的重要性。应该将函数分成不同的模块,这样计算局部梯度相对容易,然后基于链式法则将其“链”起来。重要的是,不需要把这些表达式写在纸上然后演算它的完整求导公式,因为实际上并不需要关于输入变量的梯度的数学公式。只需要将表达式分成不同的可以求导的模块(模块可以是矩阵向量的乘法操作,或者取最大值操作,或者加法操作等),然后在反向传播中一步一步地计算梯度。
网友评论