美文网首页
Kafka-Partitions分区分配计算

Kafka-Partitions分区分配计算

作者: 04974ba324f9 | 来源:发表于2018-05-24 20:28 被阅读6次

    KafkaProducer在调用send方法发送消息至broker的过程中,首先是经过拦截器Inteceptors处理,然后是经过序列化Serializer处理,之后就到了Partitions阶段,即分区分配计算阶段。在某些应用场景下,业务逻辑需要控制每条消息落到合适的分区中,有些情形下则只要根据默认的分配规则即可。在KafkaProducer计算分配时,首先根据的是ProducerRecord中的partition字段指定的序号计算分区。

    Kafka默认实现的org.apache.kafka.clients.producer.DefaultPartitioner,其partition()方法实现如下:

    /**
     * Compute the partition for the given record.
     *
     * @param topic The topic name
     * @param key The key to partition on (or null if no key)
     * @param keyBytes serialized key to partition on (or null if no key)
     * @param value The value to partition on or null
     * @param valueBytes serialized value to partition on or null
     * @param cluster The current cluster metadata
     */
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        if (keyBytes == null) {
            int nextValue = nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (availablePartitions.size() > 0) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                return availablePartitions.get(part).partition();
            } else {
                // no partitions are available, give a non-available partition
                return Utils.toPositive(nextValue) % numPartitions;
            }
        } else {
            // hash the keyBytes to choose a partition
            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
        }
    }
    
    private int nextValue(String topic) {
        AtomicInteger counter = topicCounterMap.get(topic);
        if (null == counter) {
            counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
            AtomicInteger currentCounter = topicCounterMap.putIfAbsent(topic, counter);
            if (currentCounter != null) {
                counter = currentCounter;
            }
        }
        return counter.getAndIncrement();
    }
    

    由上源码可以看出partition的计算方式:

    1. 如果key为null,则按照一种轮询的方式来计算分区分配
    2. 如果key不为null则使用称之为murmur的Hash算法(非加密型Hash函数,具备高运算性能及低碰撞率)来计算分区分配。

    KafkaProducer中还支持自定义分区分配方式,与org.apache.kafka.clients.producer.internals.DefaultPartitioner一样首先实现org.apache.kafka.clients.producer.Partitioner接口,然后在KafkaProducer的配置中指定partitioner.class为对应的自定义分区器(Partitioners)即可,即:

    properties.put("partitioner.class","com.hidden.partitioner.DemoPartitioner");
    自定义DemoPartitioner主要是实现Partitioner接口的public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster)的方法。DemoPartitioner稍微修改了下DefaultPartitioner的计算方式,详细参考如下:

    public class DemoPartitioner implements Partitioner {
    
        private final AtomicInteger atomicInteger = new AtomicInteger(0);
    
        @Override
        public void configure(Map<String, ?> configs) {}
    
        @Override
        public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
            List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
            int numPartitions = partitions.size();
            if (null == keyBytes || keyBytes.length<1) {
                return atomicInteger.getAndIncrement() % numPartitions;
            }
            //借用String的hashCode的计算方式
            int hash = 0;
            for (byte b : keyBytes) {
                hash = 31 * hash + b;
            }
            return hash % numPartitions;
        }
    
        @Override
        public void close() {}
    }
    

    相关文章

      网友评论

          本文标题:Kafka-Partitions分区分配计算

          本文链接:https://www.haomeiwen.com/subject/alqejftx.html