Algorithm Container With Most Water
Description
Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

Example:
Input: [1,8,6,2,5,4,8,3,7]
Output: 49
Submission
package com.cctoken.algorithm;
/**
* @author chenchao
*/
public class ContainerWithMostWater {
public int maxArea(int[] height) {
int maxArea = 0;
int length = height.length;
int left = 0;
int right = length - 1;
while (left < right) {
maxArea = Math.max(maxArea, Math.min(height[left], height[right]) * (right - left));
if (height[left] < height[right]) {
left ++;
} else {
right --;
}
}
return maxArea;
}
public static void main(String[] args) {
}
}
Solution
计算任意两个边界能容纳最多的水,即是求最大面积,假设两个边界的横向索引位置分别为 i,j, 那么此时的面积为 Min(height[i],height[j])*(j-i),我们分别从两次一次向中间递推,如果我们想获取更大的
面积,那么我们可以基于这样的一个认知,即放弃height比较低的一侧,向中间递增或者递减,那么不难得到上面的解答
网友评论