美文网首页Flink源码阅读系列
Flink源码阅读之Watermark对齐

Flink源码阅读之Watermark对齐

作者: 〇白衣卿相〇 | 来源:发表于2020-05-23 16:17 被阅读0次

    watermark的产生

    我们知道watermark的生成有两种方式:
    1.在sourceFunction中通过emitWatermark方法生成
    2.通过assignTimestampsAndWatermarks抽取timestamp并生成watermark

    watermark的流转

    watermark会像普通的element和stream status一样随着stream流不断的向下游流转

    watermark的处理

    前面文章写过job的执行过程,描述了数据怎么被处理的,所有流数据被封装成StreamElement对象,其有4个子类

    image.png
    本文主要讨论waterm对齐的过程
    具体处理逻辑在StreamTaskNetworkInput#processElement方法中
    private void processElement(StreamElement recordOrMark, DataOutput<T> output) throws Exception {
            if (recordOrMark.isRecord()){
                output.emitRecord(recordOrMark.asRecord());
            } else if (recordOrMark.isWatermark()) {
                            //处理watermark
                statusWatermarkValve.inputWatermark(recordOrMark.asWatermark(), lastChannel);
            } else if (recordOrMark.isLatencyMarker()) {
                output.emitLatencyMarker(recordOrMark.asLatencyMarker());
            } else if (recordOrMark.isStreamStatus()) {
                statusWatermarkValve.inputStreamStatus(recordOrMark.asStreamStatus(), lastChannel);
            } else {
                throw new UnsupportedOperationException("Unknown type of StreamElement");
            }
        }
    
    public void inputWatermark(Watermark watermark, int channelIndex) throws Exception {
            // ignore the input watermark if its input channel, or all input channels are idle (i.e. overall the valve is idle).
            //当前流状态是active,input channel的状态也是active,否则不处理
            if (lastOutputStreamStatus.isActive() && channelStatuses[channelIndex].streamStatus.isActive()) {
                long watermarkMillis = watermark.getTimestamp();
    
                // if the input watermark's value is less than the last received watermark for its input channel, ignore it also.
                //如果当前水印时间小于等于当前channel的水印时间,则忽略
                if (watermarkMillis > channelStatuses[channelIndex].watermark) {
                    channelStatuses[channelIndex].watermark = watermarkMillis;
    
                    // previously unaligned input channels are now aligned if its watermark has caught up
                    //如果当前channel是未对齐状态,且当前水印时间大于上次发出的水印时间则任务当前channel已经对齐
                    if (!channelStatuses[channelIndex].isWatermarkAligned && watermarkMillis >= lastOutputWatermark) {
                        channelStatuses[channelIndex].isWatermarkAligned = true;
                    }
    
                    // now, attempt to find a new min watermark across all aligned channels
                    //取所有input channel中最小的watermark,当做最新的watermark发出  
                    findAndOutputNewMinWatermarkAcrossAlignedChannels();
                }
            }
        }
    

    flink通过InputChannelStatus数组来维护一个算子的所有input channel

    /**
         * An {@code InputChannelStatus} keeps track of an input channel's last watermark, stream
         * status, and whether or not the channel's current watermark is aligned with the overall
         * watermark output from the valve.
         *
         * <p>There are 2 situations where a channel's watermark is not considered aligned:
         * <ul>
         *   <li>the current stream status of the channel is idle
         *   <li>the stream status has resumed to be active, but the watermark of the channel hasn't
         *   caught up to the last output watermark from the valve yet.
         * </ul>
         */
        @VisibleForTesting
        protected static class InputChannelStatus {
            protected long watermark;//当前channel最后一个watermark的时间戳
            protected StreamStatus streamStatus;//流的状态
            protected boolean isWatermarkAligned;//watermark是否对齐
    }
    

    上面的doc描述的很清楚,一个InputChannelStatus对象维护一个channel发送的最后一个watermark的时间戳,当前流的状态(active or idle),当前watermark是否和总体输出的watermark对齐。
    同时有2种情况下不需要对齐:
    1.当前stream状态是idle。
    2.stream状态是刚恢复成active,且当前channel的watermark还没赶上总体输出的最新的水印。

    上面inputWatermark方法的注释已经大概说明了channel对齐的过程。取所有input channel的最小watermark并作为当前watermark逻辑如下:

    private void findAndOutputNewMinWatermarkAcrossAlignedChannels() throws Exception {
            long newMinWatermark = Long.MAX_VALUE;
            boolean hasAlignedChannels = false;
    
            // determine new overall watermark by considering only watermark-aligned channels across all channels
            //只有已对齐的channel才会参与比较
            for (InputChannelStatus channelStatus : channelStatuses) {
                if (channelStatus.isWatermarkAligned) {
                    hasAlignedChannels = true;
                    newMinWatermark = Math.min(channelStatus.watermark, newMinWatermark);
                }
            }
    
            // we acknowledge and output the new overall watermark if it really is aggregated
            // from some remaining aligned channel, and is also larger than the last output watermark
            //从已对其的channel中获取到的最小的watermark,如果大于上次发出的watermark则作为最新的watermark发出。
            if (hasAlignedChannels && newMinWatermark > lastOutputWatermark) {
                lastOutputWatermark = newMinWatermark;
                output.emitWatermark(new Watermark(lastOutputWatermark));
            }
        }
    

    至此watermark对齐取最小的逻辑已分析完毕。

    相关文章

      网友评论

        本文标题:Flink源码阅读之Watermark对齐

        本文链接:https://www.haomeiwen.com/subject/anokahtx.html