美文网首页iOS点点滴滴OpenCV
iOS利用opencv库拼接图片的另一种方法

iOS利用opencv库拼接图片的另一种方法

作者: ZYiDa | 来源:发表于2017-10-23 17:40 被阅读591次

    文章主要参考Opencv Sift和Surf特征实现图像无缝拼接生成全景图像,我做了一小点点的修改,同时在iOS上能正常使用。

    问题说明

    Xcode9中,如果直接将图片等文件拖拽进项目中,可能会识别不到。这时候,我们通过Add Files to xxx的方式来进行添加。

    项目目录文件结构

    屏幕快照 2017-10-23 下午5.29.10.png

    主要代码

    一、合成代码
    #include "opencv2.framework/Headers/opencv.hpp"
    #include "opencv2.framework/Headers/legacy/legacy.hpp"
    #include "opencv2.framework/Headers/nonfree/nonfree.hpp"
    #include <vector>
    #include <iostream>
    
    using namespace std;
    using namespace cv;
    
    //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
    Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri){
        Mat originelP,targetP;
        originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);
        targetP=transformMaxtri*originelP;
        float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);
        float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);
        return Point2f(x,y);
    }
    
    - (UIImage *)composeImage{
    
        NSString *path01 = [[NSBundle mainBundle] pathForResource:@"test01" ofType:@"jpg"];
        NSString *path02 = [[NSBundle mainBundle] pathForResource:@"test02" ofType:@"jpg"];
        Mat img01;
        Mat img02;
        if (path01 == nil && path02 == nil) {
            return [UIImage new];
        }
        else{
            img01 = imread([path01 UTF8String]);
            img02 = imread([path02 UTF8String]);
    
            //如果没有读取到image
            if (!img01.data && !img02.data) {
                return [UIImage new];
            }
    
            //灰度图转换
            Mat img_h_01 ,img_h_02;
            cvtColor(img01, img_h_01, CV_RGB2GRAY);
            cvtColor(img02, img_h_02, CV_RGB2GRAY);
    
            //提取特征点
            SiftFeatureDetector siftDetector(800);
            vector<KeyPoint> keyPoint1,KeyPoint2;
            siftDetector.detect(img_h_01, keyPoint1);
            siftDetector.detect(img_h_02, KeyPoint2);
    
            //特征点描述,为下面的特征点匹配做准备
            SiftDescriptorExtractor siftDescriptor;
            Mat img_description_01,img_description_02;
            siftDescriptor.compute(img_h_01, keyPoint1, img_description_01);
            siftDescriptor.compute(img_h_02, KeyPoint2, img_description_02);
    
            //获得匹配特征点,并提取最优配对
            FlannBasedMatcher matcher;
            vector<DMatch> matchePoints;
            matcher.match(img_description_01,img_description_02,matchePoints,Mat());
            sort(matchePoints.begin(), matchePoints.end());//特征点排序
    
            //获取排在前N个的最优配对
            vector<Point2f> imagePoints1,imagePoints2;
            for (int i = 0; i < 10; i++) {
                imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
                imagePoints2.push_back(KeyPoint2[matchePoints[i].trainIdx].pt);
            }
    
            //获取img1到img2的投影映射矩阵,尺寸为3*3
            Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
            Mat adjustMat = (Mat_<double>(3,3)<<1.0,0,img01.cols,0,1.0,0,0,0,1.0);
            Mat adjustHomo = adjustMat * homo;
    
            //获得最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
            Point2f originalLinkPoint,targetLintPoint,basedImagePoint;
            originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
            targetLintPoint = getTransformPoint(originalLinkPoint, adjustHomo);
            basedImagePoint = KeyPoint2[matchePoints[0].trainIdx].pt;
    
            //图像配准
            Mat imageTransform1;
            warpPerspective(img01, imageTransform1, adjustHomo, cv::Size(img02.cols+img01.cols+110,img02.rows));
    
            //在最强配准点左侧的重叠区域进行累加,使衔接稳定过度,消除突变
            Mat image01OverLap,image02OverLap;
            image01OverLap = imageTransform1(cv::Rect(cv::Point(targetLintPoint.x - basedImagePoint.x,0),cv::Point(targetLintPoint.x,img02.rows)));
            image02OverLap = img02(cv::Rect(0,0,image01OverLap.cols,image01OverLap.rows));
    
            //复制img01的重叠部分
            Mat image01ROICOPY = image01OverLap.clone();
            for (int i = 0; i < image01OverLap.rows; i++) {
                for (int j = 0; j < image01OverLap.cols;j++) {
                    double weight;
                    //随距离改变而改变的叠加体系
                    weight = (double)j/image01OverLap.cols;
                    image01OverLap.at<Vec3b>(i,j)[0] = (1 - weight)*image01ROICOPY.at<Vec3b>(i,j)[0]+weight*image02OverLap.at<Vec3b>(i,j)[0];
                    image01OverLap.at<Vec3b>(i,j)[1] = (1 - weight)*image01ROICOPY.at<Vec3b>(i,j)[1]+weight*image02OverLap.at<Vec3b>(i,j)[1];
                    image01OverLap.at<Vec3b>(i,j)[2] = (1 - weight)*image01ROICOPY.at<Vec3b>(i,j)[2]+weight*image02OverLap.at<Vec3b>(i,j)[2];
                }
            }
    
            Mat ROIMat = img02(cv::Rect(cv::Point(image01OverLap.cols,0),cv::Point(img02.cols,img02.rows)));
            ROIMat.copyTo(Mat(imageTransform1,cv::Rect(targetLintPoint.x,0,ROIMat.cols,img02.rows)));
            return [self imageWithCVMat:imageTransform1];
        }
    }
    
    
    二、CVMatUIImage
    - (UIImage *)imageWithCVMat:(const cv::Mat&)cvMat
    {
        NSData *data = [NSData dataWithBytes:cvMat.data length:cvMat.elemSize() * cvMat.total()];
        CGColorSpaceRef colorSpace;
        if (cvMat.elemSize() == 1) {
            colorSpace = CGColorSpaceCreateDeviceGray();
        } else {
            colorSpace = CGColorSpaceCreateDeviceRGB();
        }
        CGDataProviderRef provider = CGDataProviderCreateWithCFData((__bridge CFDataRef)data);
        // Creating CGImage from cv::Mat
        CGImageRef imageRef = CGImageCreate(cvMat.cols,                                 //width
                                            cvMat.rows,                                 //height
                                            8,                                          //bits per component
                                            8 * cvMat.elemSize(),                       //bits per pixel
                                            cvMat.step[0],                              //bytesPerRow
                                            colorSpace,                                 //colorspace
                                            kCGImageAlphaNone|kCGBitmapByteOrderDefault,// bitmap info
                                            provider,                                   //CGDataProviderRef
                                            NULL,                                       //decode
                                            false,                                      //should interpolate
                                            kCGRenderingIntentDefault                   //intent
                                            );
    
        UIImage *cvImage = [[UIImage alloc]initWithCGImage:imageRef];
        CGImageRelease(imageRef);
        CGDataProviderRelease(provider);
        CGColorSpaceRelease(colorSpace);
        return cvImage;
    }
    
    三、显示合成的图片
    - (void)viewDidLoad {
        [super viewDidLoad];
    
        double start = [[NSDate date] timeIntervalSince1970]*1000;
        NSLog(@"start time= %f ", (start));
    
        UIImageView *img = [[UIImageView alloc]initWithFrame:self.view.bounds];
        img.contentMode = UIViewContentModeScaleAspectFit;
        img.image = [self composeImage];
        [self.view addSubview:img];
    
        double end = [[NSDate date] timeIntervalSince1970]*1000;
        NSLog(@"end time= %f ", (end));
        NSLog(@"use time =%f millisecond ", (end-start)); 
    }
    

    不足的地方,还请各位多多指教,谢谢了。

    相关文章

      网友评论

        本文标题:iOS利用opencv库拼接图片的另一种方法

        本文链接:https://www.haomeiwen.com/subject/apbauxtx.html