美文网首页网络分析
网络数据统计分析笔记|| 动态网络

网络数据统计分析笔记|| 动态网络

作者: 周运来就是我 | 来源:发表于2020-10-02 12:23 被阅读0次

    前情回顾:

    Gephi网络图极简教程
    Network在单细胞转录组数据分析中的应用
    网络数据统计分析笔记|| 为什么研究网络
    网络数据统计分析笔记|| 操作网络数据
    网络数据统计分析笔记|| 网络数据可视化
    网络数据统计分析笔记|| 网络数据的描述性分析
    网络数据统计分析笔记||网络图的数学模型
    网络数据统计分析笔记|| 网络图的统计模型
    网络数据统计分析笔记|| 网络拓扑结构推断
    网络数据统计分析笔记|| 网络图上的过程建模与预测

    动态网络(Dynamic Networks)是指加上时间戳的网络,包含时序网络和切片网络两种类型。其中时序网络是指网络从初始状态不断演化的情况。切片网络要简单一些,就是由一组切片构成的动态网络。

    # CHUNK 1
    library(sand)
    data(hc)
    
    # CHUNK 2
    head(hc)
    # ---
    ##   Time ID1 ID2  S1  S2
    ## 1  140  15  31 MED ADM
    ## 2  160  15  22 MED MED
    ## 3  500  15  16 MED MED
    ## 4  520  15  16 MED MED
    ## 5  560  16  22 MED MED
    ## 6  580  16  22 MED MED
    # ---
    
    # CHUNK 3
    ID.stack <- c(hc$ID1,hc$ID2)
    Status.stack <- c(as.character(hc$S1),
       as.character(hc$S2))
    my.t <- table(ID.stack,Status.stack)
    v.status <- character(nrow(my.t))
    for(i in (1:length(v.status))){
       v.status[i] <- names(which(my.t[i,]!=0))
    }
    table(v.status)
    # ---
    ## v.status
    ## ADM MED NUR PAT
    ##   8  11  27  29
    # ---
    
    # CHUNK 4
    status.t <- table(hc$S1,hc$S2)
    status.t <- status.t + t(status.t)
    diag(status.t) <- round(diag(status.t)/2)
    status.t
    # ---
    ##         ADM   MED   NUR   PAT
    ##   ADM   279   459  2596   441
    ##   MED   459  5660  1769  1471
    ##   NUR  2596  1769 12695  6845
    ##   PAT   441  1471  6845   209
    # ---
    
    # CHUNK 5
    tmp.es <- paste(hc$S1,"-",hc$S2,sep="")
    e.status <- character(dim(hc)[[1]])
    e.status[tmp.es=="ADM-ADM"] <- "ADM-ADM"
    e.status[tmp.es=="MED-MED"] <- "MED-MED"
    e.status[tmp.es=="NUR-NUR"] <- "NUR-NUR"
    e.status[tmp.es=="PAT-PAT"] <- "PAT-PAT"
    e.status[(tmp.es=="ADM-MED") |
       (tmp.es=="MED-ADM")] <- "ADM-MED"
    e.status[(tmp.es=="ADM-NUR") |
       (tmp.es=="NUR-ADM")] <- "ADM-NUR"
    e.status[(tmp.es=="ADM-PAT") |
       (tmp.es=="PAT-ADM")] <- "ADM-PAT"
    e.status[(tmp.es=="MED-NUR") |
       (tmp.es=="NUR-MED")] <- "MED-NUR"
    e.status[(tmp.es=="MED-PAT") |
       (tmp.es=="PAT-MED")] <- "MED-PAT"
    e.status[(tmp.es=="NUR-PAT") |
       (tmp.es=="PAT-NUR")] <- "NUR-PAT"
    
    my.hc <- data.frame(Time = hc$Time/(60*60),
                          ID1 = hc$ID1,
                          ID2 = hc$ID2,
                          Status = e.status)
    
    library(lattice)
    histogram(~Time|Status, data=my.hc, xlab="Hours",
       layout=c(5,2))
    
    # CHUNK 6
    vids <- sort(unique(c(hc$ID1, hc$ID2)))
    g.week <- graph_from_data_frame(hc[, c("ID1", "ID2", 
       "Time")], vertices=data.frame(vids),
       directed=FALSE)
    E(g.week)$Time <- E(g.week)$Time  / (60 * 60)
    
    # CHUNK 7
    summary(g.week)
    # ---
    ## IGRAPH ab0ca23 UN-- 75 32424 -- 
    ## + attr: name (v/c), Time (e/n)
    # ---
    
    # CHUNK 8
    status <- unique(rbind(data.frame(id=hc$ID1,
       status=hc$S1), data.frame(id=hc$ID2, status=hc$S2)))
    V(g.week)$Status <-
       as.character(status[order(status[,1]),2])
    
    # CHUNK 9
    E(g.week)$weight <- 1
    g.week.wgtd <- simplify(g.week)
    summary(g.week.wgtd)
    # ---
    ## IGRAPH 09000d9 UNW- 75 1139 -- 
    ## + attr: name (v/c), Status (v/c), weight (e/n)
    # ---
    
    # CHUNK 10
    is_simple(g.week.wgtd)
    # ---
    ## [1] TRUE
    # ---
    
    # CHUNK 11
    summary(E(g.week.wgtd)$weight)
    # ---
    ##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
    ##    1.00    3.00    8.00   28.47   23.00 1059.00
    # ---
    
    # CHUNK 12
    g.week.96 <- subgraph.edges(g.week,
       E(g.week)[Time <= 96])
    
    # CHUNK 13
    g.sl12 <- lapply(1:8, function(i) {
       g <- subgraph.edges(g.week,
                           E(g.week)[Time > 12*(i-1) &
                                     Time <= 12*i],
                           delete.vertices=FALSE)
       simplify(g)
    })
    
    # CHUNK 14
    sapply(g.sl12,vcount)
    # ---
    ## [1] 75 75 75 75 75 75 75 75
    # ---
    
    # CHUNK 15
    sapply(g.sl12,ecount)
    # ---
    ## [1] 179 294 257 282 265 314 197 305
    # ---
    
    # CHUNK 16
    library(networkDynamic)
    
    # CHUNK 17
    hc.spls <- cbind((hc$Time-20)/(60*60),
                       hc$Time/(60*60),
                       hc$ID1,hc$ID2)
    hc.dn <- networkDynamic(edge.spells=hc.spls)
    
    # CHUNK 18
    is.active(hc.dn,onset=0,terminus=1,e=c(1))
    # ---
    ## [1] TRUE
    # ---
    is.active(hc.dn,onset=1,terminus=2,e=c(1))
    # ---
    ## [1] FALSE
    # ---
    
    # CHUNK 19
    get.edge.activity(hc.dn,e=c(1))
    # ---
    ## [[1]]
    ##            [,1]       [,2]
    ## [1,] 0.03333333 0.03888889
    # ---
    
    # CHUNK 20
    get.edge.activity(hc.dn,e=c(10))
    # ---
    ## [[1]]
    ##           [,1]       [,2]
    ## [1,]  0.800000  0.8055556
    ## [2,]  1.355556  1.3611111
    ## [3,]  1.505556  1.5111111
    ## [4,] 24.894444 24.9055556
    ## [5,] 25.005556 25.0166667
    ## [6,] 25.388889 25.3944444
    ## [7,] 25.500000 25.5055556
    # ---
    
    # CHUNK 21
    g.sl12.dN <- get.networks(hc.dn,start=0,end=96,
                               time.increment=12)
    
    # CHUNK 22
    hc.dn.df <- as.data.frame(hc.dn)
    names(hc.dn.df)
    # ---
    ## [1] "onset"             "terminus"
    ## [3] "tail"              "head"
    ## [5] "onset.censored"    "terminus.censored"
    ## [7] "duration"          "edge.id"
    # ---
    
    # CHUNK 23
    summary(hc.dn.df$duration)
    # ---
    ##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
    ## 0.005556 0.005556 0.005556 0.012833 0.011111 1.088889
    # ---
    
    # CHUNK 24
    detach(package:networkDynamic)
    set.seed(42)
    l = layout_with_fr(g.week.wgtd)
    v.cols <- character(75)
    v.cols[V(g.week.wgtd)$Status=="ADM"] <- "yellow"
    v.cols[V(g.week.wgtd)$Status=="MED"] <- "blue"
    v.cols[V(g.week.wgtd)$Status=="NUR"] <- "green"
    v.cols[V(g.week.wgtd)$Status=="PAT"] <- "black"
    plot(g.week.wgtd, layout=l, vertex.size=3,
        edge.width=2*(E(g.week.wgtd)$weight)/100,
        vertex.color=v.cols,vertex.label=NA,)
    
    
    
    opar <- par()
    par(mfrow=c(2,4),
         mar=c(0.5, 0.5, 0.5, 0.5),
         oma=c(0.5, 1.0, 0.5, 0))
    for(i in (1:8)) {
       plot(g.sl12[[i]], layout=l, vertex.size=5,
         edge.width=2*(E(g.week.wgtd)$weight)/1000,
         vertex.color=v.cols,vertex.label=NA)
       title(paste(12*(i-1),"to",12*i,"hrs"))
    }
    par(opar)
    
    
    
    
    # Establish colors for edge status.
    tmp.es <- paste(v.status[hc.dn.df$tail],"-",
                     v.status[hc.dn.df$head],sep="")
    mycols <- numeric(nrow(hc.dn.df))
    mycols[tmp.es=="ADM-ADM"] <- 1
    mycols[tmp.es=="MED-MED"] <- 2
    mycols[tmp.es=="NUR-NUR"] <- 3
    mycols[tmp.es=="PAT-PAT"] <- 4
    mycols[(tmp.es=="ADM-MED") | (tmp.es=="MED-ADM")] <- 5
    mycols[(tmp.es=="ADM-NUR") | (tmp.es=="NUR-ADM")] <- 6
    mycols[(tmp.es=="ADM-PAT") | (tmp.es=="PAT-ADM")] <- 7
    mycols[(tmp.es=="MED-NUR") | (tmp.es=="NUR-MED")] <- 8
    mycols[(tmp.es=="MED-PAT") | (tmp.es=="PAT-MED")] <- 9
    mycols[(tmp.es=="NUR-PAT") | (tmp.es=="PAT-NUR")] <- 10
    my.palette <- rainbow(10)
    # Produce plot.
    ne <- max(hc.dn.df$edge.id)
    max.t <- max(hc.dn.df$terminus)
    plot(c(0,max.t),c(0,ne),ann=F,type='n')
    segments(hc.dn.df$onset,hc.dn.df$edge.id,
       hc.dn.df$terminus,hc.dn.df$edge.id,
       col=my.palette[mycols])
    title(xlab="Time (hours)",
       ylab="Interacting Pair
       (Ordered by First Interaction)")
    clip(0,max.t,0,ne)
    abline(v=c(11,35,59,83),lty="dashed",lw=2,
       col="lightgray")
    # Add legend to plot.
    status.pairs <- c("ADM-ADM","MED-MED","NUR-NUR",
       "PAT-PAT", "ADM-MED","ADM-NUR","ADM-PAT",
        "MED-NUR", "MED-PAT","NUR-PAT")
    legend(7,1140,status.pairs,
            text.col=my.palette[(1:10)],cex=0.7)
    

    动态网络的特征化

    all.deg <- sapply(g.sl12,degree)
    sl.lab<- sapply(1:8, function(i) 
       paste(12*(i-1), "-", 12*i, "hrs", sep=""))
    deg.df <- data.frame(Degree=as.vector(all.deg),
       Slice = rep(sl.lab,each=75),
       Status = rep(V(g.week)$Status, times=8))
    
    
    
    library(ggplot2)
    p = qplot(factor(Degree), data=deg.df,
               geom="bar",fill=Status)
    p+facet_grid(Slice~.) + xlab("Degree") + ylab("Count")
    
    # CHUNK 28
    top.deg <- lapply(1:8,function(i) {
       all.deg[,i][rank(all.deg[,i])>=70]
    })
    
    table(unlist(lapply(1:8,function(i)
       as.numeric(names(top.deg[[i]])))))
    # ---
    ##  1  5  7  8 10 11 13 15 17 19 21 22 23 24 25 26 27 29 31
    ##  2  2  4  1  1  2  2  4  3  3  2  1  3  2  1  2  2  2  1
    ## 34 36 37 63 64
    ##  1  1  2  1  2
    # ---
    
    # CHUNK 29
    V(g.week)$Status[c(7,15)]
    # ---
    ## [1] "NUR" "MED"
    # ---
    
    # CHUNK 30
    all.str <- sapply(g.sl12,strength)
    all.r <- all.str/all.deg
    round(all.r[c(7,15),],digits=2)
    # ---
    ##     [,1]  [,2] [,3]  [,4]  [,5]  [,6]  [,7]  [,8]
    ## 7   2.00 25.79 11.1 32.73 14.20 33.19  8.33 37.34
    ## 15 29.71 26.33 17.0 12.48 19.27 15.30 19.40 12.93
    # ---
    
    # CHUNK 31
    summary(c(all.r))
    # ---
    ##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's
    ##    1.00    5.00   10.43   12.06   15.73   47.35     261
    # ---
    
    # CHUNK 32
    sp.len <- lapply(1:8, function(i) {
       spl <- distances(g.sl12[[i]],v=c(7,15),
                        to=V(g.sl12[[i]]),
                        weights=NA)
       spl[spl==Inf] <- NA
       spl
    })
    ave.spl <- sapply(1:8,function(i) 
       apply(sp.len[[i]],1,mean,na.rm=T))
    round(ave.spl,digits=2)
    # ---
    ##    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
    ## 7  3.05 1.27 1.79 1.12 1.80 1.33 2.00 1.24
    ## 15 1.72 1.51 2.48 1.35 1.36 1.26 1.61 1.36
    # ---
    
    # CHUNK 33
    sapply(g.sl12,diameter)
    # ---
    ## [1]  9  8 26 28 10 10 10 10
    # ---
    
    # CHUNK 34
    round(sapply(g.sl12,mean_distance),digits=2)
    # ---
    ## [1] 2.12 1.70 1.81 1.67 1.79 1.70 1.91 1.78
    # ---
    
    

    动态网络建模目前尚且不易。因为引入时间,新问题中的组合爆炸也是一个重要原因。


    https://www.zhihu.com/question/265008836
    https://zhuanlan.zhihu.com/p/148190973
    https://www.ccs.neu.edu/home/rraj/Talks/DynamicNetworks/DYNAMO/IntroDynamicNetworks.pdf
    https://briatte.github.io/ggnet/
    https://link.springer.com/referencework/10.1007/978-1-4614-7163-9
    https://blog.csdn.net/tanzhangwen/article/details/8262017

    相关文章

      网友评论

        本文标题:网络数据统计分析笔记|| 动态网络

        本文链接:https://www.haomeiwen.com/subject/arfuyktx.html