关于数据预处理我们有3个常用的符号,数据矩阵X,假设其尺寸是[N x D](N是数据样本的数量,D是数据的维度)。
均值减法(****Mean subtraction****)是预处理最常用的形式。它对数据中每个独立特征减去平均值,从几何上可以理解为在每个维度上都将数据云的中心都迁移到原点。在numpy中,该操作可以通过代码X -= np.mean(X, axis=0)实现。而对于图像,更常用的是对所有像素都减去一个值,可以用X -= np.mean(X)实现,也可以在3个颜色通道上分别操作。
归一化(****Normalization****)是指将数据的所有维度都归一化,使其数值范围都近似相等。有两种常用方法可以实现归一化。第一种是先对数据做零中心化(zero-centered)处理,然后每个维度都除以其标准差,实现代码为X /= np.std(X, axis=0)。第二种方法是对每个维度都做归一化,使得每个维度的最大和最小值是1和-1。这个预处理操作只有在确信不同的输入特征有不同的数值范围(或计量单位)时才有意义,但要注意预处理操作的重要性几乎等同于学习算法本身。在图像处理中,由于像素的数值范围几乎是一致的(都在0-255之间),所以进行这个额外的预处理步骤并不是很必要。
——————————————————————————————————————————
——————————————————————————————————————————
PCA和白化(****Whitening****)是另一种预处理形式。在这种处理中,先对数据进行零中心化处理,然后计算协方差矩阵,它展示了数据中的相关性结构。
假设输入数据矩阵X的尺寸为[N x D]X -= np.mean(X, axis = 0) # 对数据进行零中心化(重要)cov = np.dot(X.T, X) / X.shape[0] # 得到数据的协方差矩阵
数据协方差矩阵的第(i, j)个元素是数据第i个和第j个维度的协方差。具体来说,该矩阵的对角线上的元素是方差。还有,协方差矩阵是对称和半正定**的。我们可以对数据协方差矩阵进行SVD(奇异值分解)运算。
U,S,V = np.linalg.svd(cov)
U的列是特征向量,S是装有奇异值的1维数组(因为cov是对称且半正定的,所以S中元素是特征值的平方)。为了去除数据相关性,将已经零中心化处理过的原始数据投影到特征基准上:
Xrot = np.dot(X,U) # 对数据去相关性
注意U的列是标准正交向量的集合(范式为1,列之间标准正交),所以可以把它们看做标准正交基向量。因此,投影对应x中的数据的一个旋转,旋转产生的结果就是新的特征向量。如果计算Xrot的协方差矩阵,将会看到它是对角对称的。np.linalg.svd的一个良好性质是在它的返回值U中,特征向量是按照特征值的大小排列的。我们可以利用这个性质来对数据降维,只要使用前面的小部分特征向量,丢弃掉那些包含的数据没有方差的维度。 这个操作也被称为主成分分析( Principal Component Analysis** 简称PCA)降维:
Xrot_reduced = np.dot(X, U[:,:100]) # Xrot_reduced 变成 [N x 100]
经过上面的操作,将原始的数据集的大小由[N x D]降到了[N x 100],留下了数据中包含最大方差的100个维度。通常使用PCA降维过的数据训练线性分类器和神经网络会达到非常好的性能效果,同时还能节省时间和存储器空间。
最后一个在实践中会看见的变换是白化(****whitening****)。白化操作的输入是特征基准上的数据,然后对每个维度除以其特征值来对数值范围进行归一化。该变换的几何解释是:如果数据服从多变量的高斯分布,那么经过白化后,数据的分布将会是一个均值为零,且协方差相等的矩阵。该操作的代码如下:
网友评论