美文网首页
LeetCode #1111 Maximum Nesting D

LeetCode #1111 Maximum Nesting D

作者: air_melt | 来源:发表于2022-04-25 19:08 被阅读0次

1111 Maximum Nesting Depth of Two Valid Parentheses Strings 有效括号的嵌套深度

Description:
A string is a valid parentheses string (denoted VPS) if and only if it consists of "(" and ")" characters only, and:

It is the empty string, or
It can be written as AB (A concatenated with B), where A and B are VPS's, or
It can be written as (A), where A is a VPS.
We can similarly define the nesting depth depth(S) of any VPS S as follows:

depth("") = 0
depth(A + B) = max(depth(A), depth(B)), where A and B are VPS's
depth("(" + A + ")") = 1 + depth(A), where A is a VPS.
For example, "", "()()", and "()(()())" are VPS's (with nesting depths 0, 1, and 2), and ")(" and "(()" are not VPS's.

Given a VPS seq, split it into two disjoint subsequences A and B, such that A and B are VPS's (and A.length + B.length = seq.length).

Now choose any such A and B such that max(depth(A), depth(B)) is the minimum possible value.

Return an answer array (of length seq.length) that encodes such a choice of A and B: answer[i] = 0 if seq[i] is part of A, else answer[i] = 1. Note that even though multiple answers may exist, you may return any of them.

Example:

Example 1:

Input: seq = "(()())"
Output: [0,1,1,1,1,0]

Example 2:

Input: seq = "()(())()"
Output: [0,0,0,1,1,0,1,1]

Constraints:

1 <= seq.size <= 10000

题目描述:
有效括号字符串 定义:对于每个左括号,都能找到与之对应的右括号,反之亦然。详情参见题末「有效括号字符串」部分。

嵌套深度 depth 定义:即有效括号字符串嵌套的层数,depth(A) 表示有效括号字符串 A 的嵌套深度。详情参见题末「嵌套深度」部分。

有效括号字符串类型与对应的嵌套深度计算方法如下图所示:

[图片上传失败...(image-612ffb-1650884853902)]

给你一个「有效括号字符串」 seq,请你将其分成两个不相交的有效括号字符串,A 和 B,并使这两个字符串的深度最小。

不相交:每个 seq[i] 只能分给 A 和 B 二者中的一个,不能既属于 A 也属于 B 。
A 或 B 中的元素在原字符串中可以不连续。
A.length + B.length = seq.length
深度最小:max(depth(A), depth(B)) 的可能取值最小。
划分方案用一个长度为 seq.length 的答案数组 answer 表示,编码规则如下:

answer[i] = 0,seq[i] 分给 A 。
answer[i] = 1,seq[i] 分给 B 。
如果存在多个满足要求的答案,只需返回其中任意 一个 即可。

示例 :

示例 1:

输入:seq = "(()())"
输出:[0,1,1,1,1,0]

示例 2:

输入:seq = "()(())()"
输出:[0,0,0,1,1,0,1,1]
解释:本示例答案不唯一。
按此输出 A = "()()", B = "()()", max(depth(A), depth(B)) = 1,它们的深度最小。
像 [1,1,1,0,0,1,1,1],也是正确结果,其中 A = "()()()", B = "()", max(depth(A), depth(B)) = 1 。

提示:

1 < seq.size <= 10000

有效括号字符串:

仅由 "(" 和 ")" 构成的字符串,对于每个左括号,都能找到与之对应的右括号,反之亦然。
下述几种情况同样属于有效括号字符串:

  1. 空字符串
  2. 连接,可以记作 AB(A 与 B 连接),其中 A 和 B 都是有效括号字符串
  3. 嵌套,可以记作 (A),其中 A 是有效括号字符串

嵌套深度:

类似地,我们可以定义任意有效括号字符串 s 的 嵌套深度 depth(S):

  1. s 为空时,depth("") = 0
  2. s 为 A 与 B 连接时,depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是有效括号字符串
  3. s 为嵌套情况,depth("(" + A + ")") = 1 + depth(A),其中 A 是有效括号字符串

例如:"","()()",和 "()(()())" 都是有效括号字符串,嵌套深度分别为 0,1,2,而 ")(" 和 "(()" 都不是有效括号字符串。

思路:

模拟
题意就是将左括号均匀的分给 AB
那么按照奇偶分配即可
时间复杂度O(n), 空间复杂度O(1)

代码:
C++:

class Solution
{
public:
    vector<int> maxDepthAfterSplit(string seq) 
    {
        int i = 0, n = seq.length();
        vector<int> result(n);
        for (const auto& c : seq) result[i++] = c == '(' ? i & 1 : (i + 1 & 1);
        return result;
    }
};

Java:

class Solution {
    public int[] maxDepthAfterSplit(String seq) {
        int i = 0, n = seq.length(), result[] = new int[n];
        for (char c : seq.toCharArray()) result[i++] = c == '(' ? (i + 1 & 1) : i & 1;
        return result;
    }
}

Python:

class Solution:
    def maxDepthAfterSplit(self, seq: str) -> List[int]:
        return [(i & 1) if c == '(' else (i + 1 & 1) for i, c in enumerate(seq)]

相关文章

网友评论

      本文标题:LeetCode #1111 Maximum Nesting D

      本文链接:https://www.haomeiwen.com/subject/athqyrtx.html