美文网首页
Hive分析统计离线日志信息

Hive分析统计离线日志信息

作者: 那山的狐狸 | 来源:发表于2020-05-14 23:46 被阅读0次

    关注公众号:分享电脑学习

    回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)

    云盘目录说明:

    tools目录是安装包

    res 目录是每一个课件对应的代码和资源等

    doc 目录是一些第三方的文档工具

    承接上一篇文档《新增访客数量MR统计之MR数据输出到MySQL

    hive-1.2.1的版本可以直接映射HBase已经存在的表

    如果说想在hive创建表,同时HBase不存在对应的表,也想做映射,那么采用编译后的hive版本hive-1.2.1-hbase

    1. Hive中创建外部表,关联hbase

    CREATEEXTERNALTABLEevent_log_20180728(

    keystring,

    plstring,

    verstring,

    s_timestring,

    u_udstring,

    u_sdstring,

    enstring)

    STOREDBY'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

    WITHSERDEPROPERTIES ("hbase.columns.mapping"=":key,info:pl,info:ver,info:s_time,info:u_ud,info:u_sd,info:en")

    TBLPROPERTIES("hbase.table.name"="event_log_20180728");

    统计多少个新用户:

    selectcount(*)fromevent_log_20180728whereen="e_l";

    2. 提取数据,进行初步的数据过滤操作,最终将数据保存到临时表

    创建临时表

    CREATETABLEstats_hourly_tmp01(

    plstring,

    verstring,

    s_timestring,

    u_udstring,

    u_sdstring,

    enstring,

    `date`string,

    hourint

    );

    将原始数据提取到临时表中

    INSERTOVERWRITETABLEstats_hourly_tmp01

    SELECT pl,ver,s_time,u_ud,u_sd,en,

    from_unixtime(cast(s_time/1000asint),'yyyy-MM-dd'),hour(from_unixtime(cast(s_time/1000asint),'yyyy-MM-dd HH:mm:ss'))

    FROMevent_log_20200510

    WHERE en="e_l"oren="e_pv";

    SELECTfrom_unixtime(cast(s_time/1000asint),'yyyy-MM-dd'),from_unixtime(cast(s_time/1000asint),'yyyy-MM-dd HH:mm:ss')FROMevent_log_20180728;

    查看结果

    3. 具体kpi的分析

    创建临时表保存数据结果

    CREATETABLEstats_hourly_tmp02(

    plstring,

    verstring,

    `date`string,

    kpistring,

    hourint,

    valueint

    );

    统计活跃用户 u_ud 有多少就有多少用户

    统计platform维度是:(name,version)

    INSERTOVERWRITETABLEstats_hourly_tmp02

    SELECT pl,ver,`date`,'hourly_new_install_users'askpi,hour,COUNT(distinctu_ud)asv

    FROM stats_hourly_tmp01

    WHERE en="e_l"

    GROUPBYpl,ver,`date`,hour;

    查看结果:

    统计会话长度指标

    会话长度 = 一个会话中最后一条记录的时间 - 第一条的记录时间 = maxtime - mintime

    步骤:

    1. 计算出每个会话的会话长度 group by u_sd

    2. 统计每个区间段的总会话长度

    统计platform维度是:(name,version)

    INSERTINTOTABLE

    SELECT pl,ver,`date`,'hourly_session_length'askpi,hour,sum(s_length)/1000asv

    FROM (

    SELECTpl,ver,`date`,hour,u_sd,(max(s_time) -min(s_time))ass_length

    FROM stats_hourly_tmp01

    GROUPBYpl,ver,`date`,hour,u_sd

    ) tmp

    GROUPBYpl,ver,`date`,hour;

    查看结果

    将tmp02的数据转换为和mysql表结构一致的数据

    窄表转宽表 => 转换的结果保存到临时表中

    CREATETABLEstats_hourly_tmp03(

    plstring, verstring,`date`string, kpistring,

    hour00int, hour01int, hour02int, hour03int,

    hour04int, hour05int, hour06int, hour07int,

    hour08int, hour09int, hour10int, hour11int,

    hour12int, hour13int, hour14int, hour15int,

    hour16int, hour17int, hour18int, hour19int,

    hour20int, hour21int, hour22int, hour23int

    );

    INSERTOVERWRITETABLEstats_hourly_tmp03

    SELECT pl,ver,`date`,kpi,

    max(casewhenhour=0thenvalueelse0end)ash0,

    max(casewhenhour=1thenvalueelse0end)ash1,

    max(casewhenhour=2thenvalueelse0end)ash2,

    max(casewhenhour=3thenvalueelse0end)ash3,

    max(casewhenhour=4thenvalueelse0end)ash4,

    max(casewhenhour=5thenvalueelse0end)ash5,

    max(casewhenhour=6thenvalueelse0end)ash6,

    max(casewhenhour=7thenvalueelse0end)ash7,

    max(casewhenhour=8thenvalueelse0end)ash8,

    max(casewhenhour=9thenvalueelse0end)ash9,

    max(casewhenhour=10thenvalueelse0end)ash10,

    max(casewhenhour=11thenvalueelse0end)ash11,

    max(casewhenhour=12thenvalueelse0end)ash12,

    max(casewhenhour=13thenvalueelse0end)ash13,

    max(casewhenhour=14thenvalueelse0end)ash14,

    max(casewhenhour=15thenvalueelse0end)ash15,

    max(casewhenhour=16thenvalueelse0end)ash16,

    max(casewhenhour=17thenvalueelse0end)ash17,

    max(casewhenhour=18thenvalueelse0end)ash18,

    max(casewhenhour=19thenvalueelse0end)ash19,

    max(casewhenhour=20thenvalueelse0end)ash20,

    max(casewhenhour=21thenvalueelse0end)ash21,

    max(casewhenhour=22thenvalueelse0end)ash22,

    max(casewhenhour=23thenvalueelse0end)ash23

    FROM stats_hourly_tmp02

    GROUPBYpl,ver,`date`,kpi;

    selecthour14,hour15,hour16fromstats_hourly_tmp03;

    结果:

    将维度的属性值转换为id,使用UDF进行转换

    1. 将udf文件夹中的所有自定义HIVE的UDF放到项目中

    2. 使用run maven install环境进行打包

    3. 将打包形成的jar文件上传到HDFS上的/jar文件夹中

    4. hive中创建自定义函数,命令如下:

    createfunctiondateconverteras'com.xlgl.wzy.hive.udf.DateDimensionConverterUDF'usingjar'hdfs://master:9000/jar/transformer-0.0.1.jar';

    createfunctionkpiconverteras'com.xlgl.wzy.hive.udf.KpiDimensionConverterUDF'usingjar'hdfs://master:9000/jar/transformer-0.0.1.jar';

    createfunctionplatformconverteras'com.xlgl.wzy.hive.udf.PlatformDimensionConverterUDF'usingjar'hdfs://master:9000/jar/transformer-0.0.1.jar';

    创建hive中对应mysql的最终表结构

    CREATETABLEstats_hourly(

    platform_dimension_idint,

    date_dimension_idint,

    kpi_dimension_idint,

    hour00int, hour01int, hour02int, hour03int,

    hour04int, hour05int, hour06int, hour07int,

    hour08int, hour09int, hour10int, hour11int,

    hour12int, hour13int, hour14int, hour15int,

    hour16int, hour17int, hour18int, hour19int,

    hour20int, hour21int, hour22int, hour23int

    );

    INSERTOVERWRITETABLEstats_hourly

    SELECT

    platformconverter(pl,ver),dateconverter(`date`,'day'),kpiconverter(kpi),

    hour00,hour01,hour02,hour03,

    hour04,hour05,hour06,hour07,

    hour08,hour09,hour10,hour11,

    hour12,hour13,hour14,hour15,

    hour16,hour17,hour18,hour19,

    hour20,hour21,hour22,hour23

    FROMstats_hourly_tmp03;

    导出sqoop-》mysql

    bin/sqoop export \

    --connect jdbc:mysql://master:3306/test \

    --username root \

    --password123456\

    --table stats_hourly \

    --export-dir/user/hive/warehouse/log_lx.db/stats_hourly \

    -m1\

    --input-fields-terminated-by'\001'

    查询mysql

    相关文章

      网友评论

          本文标题:Hive分析统计离线日志信息

          本文链接:https://www.haomeiwen.com/subject/avgfohtx.html