1、使用 joblib
保存模型
import joblib
output_model_file = 'saved_model.pkl'
joblib.dump(linear_regressor, output_model_file)
加载模型,注释部分直接进行了预测
import joblib
model_file = 'saved_model.pkl'
linear_regressor = joblib.load(model_file)
# y_test_pred = linear_regressor.predict(X_test)
2、使用 pickle
保存模型
import pickle
output_model_file = 'saved_model.pkl'
with open(model_file, 'wb') as mf:
pickle.dump(linear_regressor, mf)
加载模型,注释部分直接进行了预测
import pickle
model_file = 'saved_model.pkl'
with open(model_file, 'rb') as mf:
linear_regressor = pickle.load(mf)
# y_test_pred = linear_regressor.predict(X_test)
网友评论