Kaggle比赛中常用
在做分析时,处理近2G的一个CSV文件,10G内存的机器感觉内存不够用,找到了这个函数,效果很好,尤其是对大量使用数字类型的数据,主要原理是把int64/float64类型的数值用更小的int(float)32/16/8来搞定,拿走直接用,经常会减少50%的内存使用,甚至更多。
def reduce_mem_usage(df, verbose=True):
numerics = ["int16", "int32", "int64", "float16", "float32", "float64"]
start_mem = df.memory_usage().sum() / 1024 ** 2
for col in df.columns:
col_type = df[col].dtypes
if col_type in numerics:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == "int":
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if (
c_min > np.finfo(np.float16).min
and c_max < np.finfo(np.float16).max
):
df[col] = df[col].astype(np.float16)
elif (
c_min > np.finfo(np.float32).min
and c_max < np.finfo(np.float32).max
):
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
end_mem = df.memory_usage().sum() / 1024 ** 2
if verbose:
print(
"Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)".format(
end_mem, 100 * (start_mem - end_mem) / start_mem
)
)
return df
网友评论