在andorid中,系统的行为、用户的输入等事件都会被包装为一个消息,
进行消息发送、处理
关于消息的处理,就离不开Handler、Message、Loop
在平时使用时,Handler多用于多线程之间通信。
- 那么Handler如何实现多线程通信?
- 多线程之间为何不会互相干扰?
- 为什么不使用用wait/notify?
Handler多线程通信
先看一下普通使用案例
public class MyActiivty extends Activity {
private Handler myHandler = new Handler() {
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
if(msg.what=100) {
// TODO
}
}
}
}
static class MyThread extends Thread() {
@Overtide
public void run() {
super.run();
Message message = Message.obtain();
message.what = 100;
myHandler.sendMessage();
}
}
}
上面就是一个简单的在子线程发送消息,回到主线程处理消息的过程,
通过在子线程构造一个message对象,在主线程中获取到该message对象,来处理消息。
所以其实Handler处理多线程通信是通过共享Message对象内存来实现的。
内存是不区分线程的,这种通信原理就是在子线程与主线程共享message内存
所以 那么Handler如何实现多线程通信?
通过 内存共享 实现。
在多线程时,Handler又是如何保证消息如何在正确的线程发送的呢,或者说是如何保证执行的线程是正确的了。
这就要引入我们的Loop、消息队列概念了。
handler处理消息模型:
<img src='../../../images/looper.png' style="zoom:20%" />
handler负责发送、处理消息
looper负责一直轮询消息
messageQueue消息队列,负责存放、取出消息
Looper
讲到looper负责一直轮询消息,但是好像在上面的代码中,都没有使用到looper。
其实是在主线程中,系统已经默认为我们创建了looper,
在ActivityThread.java的main方法中(ActivityThread即为主线程)
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
// Install selective syscall interception
AndroidOs.install();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper();
// Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
// It will be in the format "seq=114"
long startSeq = 0;
if (args != null) {
for (int i = args.length - 1; i >= 0; --i) {
if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
startSeq = Long.parseLong(
args[i].substring(PROC_START_SEQ_IDENT.length()));
}
}
}
ActivityThread thread = new ActivityThread();
thread.attach(false, startSeq);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
我们可以看到,调用了Loop.prepareMainLooper()、Looper.loop()函数,
而且在Looper.loop()后面就抛出异常,
也就是说主线程中loop一旦停止轮询,则会抛出异常闪退。正常情况时,loop就是一直在轮询。
查看Looper的这两个函数
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
在prepareMainLooper中可以看到,不允许调用两次,否则会抛出异常。
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
// Make sure the observer won't change while processing a transaction.
final Observer observer = sObserver;
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
Object token = null;
if (observer != null) {
token = observer.messageDispatchStarting();
}
long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
try {
msg.target.dispatchMessage(msg);
if (observer != null) {
observer.messageDispatched(token, msg);
}
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
loop函数中,首先获取通过myLooper()函数获取looper对象,如果looper对象为空,则抛出异常,提示必须在当前线程先执行Looper.prepare()
然后获取looper对象持有的messageQueue,
然后就是for(;;)无限循环,获取messageQueue下一条消息
获取到message后调用msg.target.dispatchMessage(msg);
将这条消息发送出去。
最后执行msg.recycleUnchecked(),相当于一个回收利用。
我们看一下myLooper函数
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
说明looper是存放在ThreadLocal中的。
关于ThreadLocal,在之前已经大致讲过了。
ThreadLocal讲解(https://wangchongwei.github.io/blog/2020/08/java-ThreadLocal%E8%A7%A3%E6%9E%90.html)
在每一个线程,都存在一个对应且唯一的值
我们可以看一下prepare函数
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
可以看到与prepareMainLooper的不同,因为prepareMainLooper是在主线程调用,而主线程很自由一个,
所以直接使用sMainLooper来保存主线程的looper,而且主线程中prepare(false);标示不允许looper退出。
而在子线程时,就是将looper对象保存到sThreadLocal中,sThreadLocal.get()不为null时,会抛出异常。
也就是说子线程中prepare只允许调用一次,保证了每个线程中的looper对象唯一性
然后看到子线程和主线程的另一个差异prepare(false) && prepare(true)
因为andorid,所有事件如:用户的操作、ui的渲染等都是作为消息发送的,而这些都是在主线程操作的,所以在主线程中是不允许退出loop循环,否则抛出异常。
而在子线程中prepare(true),允许退出,其实在子线程中新建handler、looper时,当我们不需要再使用,需要终止loop循环。
此时需要调用:
public void quitSafely() {
mQueue.quit(true);
}
MessageQueue
在上面中已经讲过Looper,looper中持有一个messageQueue
final MessageQueue queue = me.mQueue;
mQueue 在Looper的私有构造函数中被初始化
接下来我们看一下MessageQueue
队列是一种数据结果,FIFO先进先出
MessageQueue 是一个消息队列,默认也是先进先出,有序执行
之前说了,MessageQueue主要用于存放、取出消息。
在Looper中主要用到了messagequeue的next函数,用于取出下一条消息
我们先看一下存放消息
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
如果当前线程已经退出,mQuitting为true,则抛出异常。
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
}
当全局变量mMessages为空,或者当前传入的when为0, 或者当前when小于全局变量mMessages.when(即时间在前)
其实判断的是两种状态,1:messageQueue队列为空 2:添加的消息执行时间在前
此时将该消息置于队首,
needWake = mBlocked;
如果mBlocked为true,needWake也为true,就是如果之前阻塞则唤醒,反之无需唤醒
再看不满足上面情况下时,即消息队列中已添加过消息,而且要添加的消息.when在上一次添加的消息之后
else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
for循环,遍历链表,当找到节点为null即遍历完 || 传入的when小于遍历节点的when(即传入消息的时间在遍历节点时间之前时)
终止循环,将msg.next -> p
原来
prev.next -> n.next -> ... -> n.next -> p -> ...
现在
prev.next -> n.next -> ... -> n.next -> msg.next -> p -> ...
也就是说,message链表是按照when排序的,when越小,在越靠近链头
为何要根据when排序了,其实是因为message执行时间是要按时间排序,要执行时间越小,代表时间越早,所以放在链头
以上是消息队列,入队函数,再看一下出队函数
@UnsupportedAppUsage
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
其中有一段代码可以先不看,
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
这一块涉及到消息的同步屏障,放到下面再讲,我们先只看出队时的逻辑
next函数就是取出下一条消息。
开启for循环
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
如果nextPollTimeoutMillis不等于0时,会阻塞。
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
当当前message不为空时:
如果当前时间小于msg.when,即没到执行时间,则阻塞线程到msg.when时间
将msg.next赋值给全局变量mMessages,再将msg.next指向null
然后返回msg这一个节点,如此不会返回一个链表
如果msg为空,说明队列为空,没有消息,此时赋值nextPollTimeoutMillis = -1;下一次循环时,就会阻塞。
-
MessageQueue 添加消息、取出消息是线程安全的吗?
是,是线程安全的。 -
如何保证线程安全的?
通过锁,存放消息以及取出消息时都有设置synchronized (this),
synchronized 后面修饰的是this,同一个对象在多线程环境调用函数时,只会有一个线程获取到锁,进行操作。
synchronized 是内置锁,JVM已经内置处理了锁的获取以及释放 -
为什么不使用用wait/notify?
在上述代码可以看到使用了阻塞、锁,阻塞是直接调用native 函数来阻塞,
其实在内部已经使用了wait/notif。
Message
上面讲了消息机制中的Handler、Looper、MessageQueue;
现在我们再讲一下消息的本体Message
首先通过我们在上面的分析,可以知道Message在数据结构上看,是一个链表,而且是只有next指针,所以是个单链表。
Message中没有什么复杂操作,都是一些赋值函数
有两个地址可以注意下
public void recycle() {
if (isInUse()) {
if (gCheckRecycle) {
throw new IllegalStateException("This message cannot be recycled because it "
+ "is still in use.");
}
return;
}
recycleUnchecked();
}
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = UID_NONE;
workSourceUid = UID_NONE;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
Message的回收函数不是将对象置为空,而是将Message中的变量都还原为默认值。
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
Message还提供obtain函数,不会直接new 一个Message对象,而是共享之前的对象,改变对象的内部属性。
所以我们在实际使用中都是使用Message.obtain()来构建message对象,而不是一直使用new ,这样可以避免频繁的生成、回收,避免内存抖动。
这种设计被成为 * 享元设计模式 *
Message 同步屏障
上面讲的消息message链表是根据when时间排序,那如果有紧急的消息必须马上处理呢,这个时候不可能等其他先执行而必须是马上执行的事件时,怎么办?
这个时候就可以用到 同步屏障
我们可以看一下上面讲到的代码
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
原理就是将一个消息状态标示符isAsynchronous设置为false,此时发送消息时,handler不会绑定到msg上,msg.target就为null,
在for循环中首先对msg.target做检测,当msg对象不为空,而msg.target为空时,此时就是message链表中有同步屏障,
此时不会依次按链表来取出消息,而是通过遍历取出message链表中的同步消息进行处理。
当所有的同步消息都执行完毕,就会remove同步屏障,又会回到之前的按序取消息的方式。
设置与去除同步屏障的方法在MessageQueue类中
// 设置同步屏障
postSyncBarrier()
// 去除同步屏障
removeSyncBarrier()
但这个两个方法都是使用了hide注解,我们是无法直接调用的,只能系统内部使用。
总结
handler消息机制大概流程:
生成Looper对象,生成Handler对象,Lopper.looper循环
在Handler构造函数内,获取到上面生成的looper对象,通过ThreadLocal保存到对应的线程,与MessageQueue绑定
在需要发送消息的地方调用handler.sendMessage(),在sendMessage时,将message与handler绑定,将message.target赋值为当前handler
同时,sendMessage时,调用messageQueue.enqueueMessage将message放入消息队列。
同时,Looper.loop()在循环一直取出消息message,然后通过message.target获取到handler对象,最终回调到handler.handlerMessage函数。
这样消息从产生到处理流程就走完了。
总结提问:
- Looper.loop()一直在循环,为什么不会导致应用卡死(ANR)?
答:loop()循环与ANR是两个不相关的事情,loop只是循环事件,ANR是处理事件耗时,导致无法响应用户的下一次输入。
系统的ANR弹窗都是通过消息机制发送,并弹出提示窗的。
网友评论