Day 6 - Learning R package

作者: 咚_e4c6 | 来源:发表于2020-03-18 23:26 被阅读0次

    LunaprimRose 2020.03.18

    Day 6.png

    Install and load R package

    镜像设置

    • CRAN 镜像
      • TUNA Team, Tsinghua University https://mirrors.tuna.tsinghua.edu.cn/CRAN/
      • University of Science and Technology of China https://mirrors.ustc.edu.cn/CRAN/
      • Lanzhou University Open Source Society https://mirror.lzu.edu.cn/CRAN/
      • Tencent https://mirrors.cloud.tencent.com/CRAN/
      • Aliyun https://mirrors.aliyun.com/CRAN/
    • Bioconductor 镜像
      • TUNA Team, Tsinghua University https://mirrors.tuna.tsinghua.edu.cn/bioconductor/
      • University of Science and Technology of China https://mirrors.ustc.edu.cn/bioc/
    1. 初始模式

    RStudio - Tools - Global Options - Packegs - Package Managment

    1. 升级模式

    Tuna Team, Tsinghua University 为例

    options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
    options(BioC_mirror="https://mirrors.tuna.tsinghua.edu.cn/bioconductor")
    options()$repos
                                            CRAN 
    "https://mirrors.tuna.tsinghua.edu.cn/CRAN/" 
                                  China(Tencent) 
        "http://mirrors.cloud.tencent.com/CRAN/" 
    attr(,"RStudio")
    [1] TRUE
    options()$BioC_mirror
    [1] "https://mirrors.tuna.tsinghua.edu.cn/bioconductor"
    
    1. 高级模式
    file.edit("~/.Rprofile")
    options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
    options(BioC_mirror="https://mirrors.tuna.tsinghua.edu.cn/bioconductor")
    

    Install Packages

    1. 在线安装
    install.packegs('ggplot2')
    BiocManager::install('DEseq2')
    
    1. 本地安装
    install.packages('path_to_packages')
    

    Load Packages

    library('ggplot2')
    require('ggplot2')
    

    Basic function

    1. mutate() 新增列
    test <- iris[c(1:2,51:52,101:102),]
    test
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
    1            5.1         3.5          1.4         0.2     setosa
    2            4.9         3.0          1.4         0.2     setosa
    51           7.0         3.2          4.7         1.4 versicolor
    52           6.4         3.2          4.5         1.5 versicolor
    101          6.3         3.3          6.0         2.5  virginica
    102          5.8         2.7          5.1         1.9  virginica
    mutate(test,new = Sepal.Length*Sepal.Width)
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species   new
    1          5.1         3.5          1.4         0.2     setosa 17.85
    2          4.9         3.0          1.4         0.2     setosa 14.70
    3          7.0         3.2          4.7         1.4 versicolor 22.40
    4          6.4         3.2          4.5         1.5 versicolor 20.48
    5          6.3         3.3          6.0         2.5  virginica 20.79
    6          5.8         2.7          5.1         1.9  virginica 15.66
    transmute(test,new = Sepal.Length*Sepal.Width)
        new
    1 17.85
    2 14.70
    3 22.40
    4 20.48
    5 20.79
    6 15.66
    
    1. select() 按列筛选
    select(test,1)
        Sepal.Length
    1            5.1
    2            4.9
    51           7.0
    52           6.4
    101          6.3
    102          5.8
    select(test,c(1,3))
        Sepal.Length Petal.Length
    1            5.1          1.4
    2            4.9          1.4
    51           7.0          4.7
    52           6.4          4.5
    101          6.3          6.0
    102          5.8          5.1
    select(test,1,Species)
        Sepal.Length    Species
    1            5.1     setosa
    2            4.9     setosa
    51           7.0 versicolor
    52           6.4 versicolor
    101          6.3  virginica
    102          5.8  virginica
    
    1. filter() 筛选行
    filter(test,Species == "setosa")
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
    1          5.1         3.5          1.4         0.2  setosa
    2          4.9         3.0          1.4         0.2  setosa
    filter(test,Species == "setosa"&Sepal.Length >5)
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
    1          5.1         3.5          1.4         0.2  setosa
    filter(test,Species %in% c("setosa","versicolor"))
      Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
    1          5.1         3.5          1.4         0.2     setosa
    2          4.9         3.0          1.4         0.2     setosa
    3          7.0         3.2          4.7         1.4 versicolor
    4          6.4         3.2          4.5         1.5 versicolor
    
    1. arrange() 排序
    arrange(test,Sepal.Length)
      Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
    1          4.9         3.0          1.4         0.2     setosa
    2          5.1         3.5          1.4         0.2     setosa
    3          5.8         2.7          5.1         1.9  virginica
    4          6.3         3.3          6.0         2.5  virginica
    5          6.4         3.2          4.5         1.5 versicolor
    6          7.0         3.2          4.7         1.4 versicolor
    arrange(test,desc(Sepal.Length))
      Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
    1          7.0         3.2          4.7         1.4 versicolor
    2          6.4         3.2          4.5         1.5 versicolor
    3          6.3         3.3          6.0         2.5  virginica
    4          5.8         2.7          5.1         1.9  virginica
    5          5.1         3.5          1.4         0.2     setosa
    6          4.9         3.0          1.4         0.2     setosa
    
    1. summarise() 汇总
    summarise(test,mean(Sepal.Length),sd(Sepal.Length))
      mean(Sepal.Length) sd(Sepal.Length)
    1           5.916667        0.8084965
    group_by(test,Species)
    # A tibble: 6 x 5
    # Groups:   Species [3]
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
    *        <dbl>       <dbl>        <dbl>       <dbl> <fct>     
    1          5.1         3.5          1.4         0.2 setosa    
    2          4.9         3            1.4         0.2 setosa    
    3          7           3.2          4.7         1.4 versicolor
    4          6.4         3.2          4.5         1.5 versicolor
    5          6.3         3.3          6           2.5 virginica 
    6          5.8         2.7          5.1         1.9 virginica 
    summarise(group_by(test,Species),mean(Sepal.Length),sd(Sepal.Length))
    # A tibble: 3 x 3
      Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
      <fct>                     <dbl>              <dbl>
    1 setosa                     5                 0.141
    2 versicolor                 6.7               0.424
    3 virginica                  6.05              0.354
    

    Practical skills

    1. 管道操作
    test %>% group_by(Species) %>% summarise(mean(Sepal.Length),sd(Sepal.Length))
    # A tibble: 3 x 3
      Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
      <fct>                     <dbl>              <dbl>
    1 setosa                     5                 0.141
    2 versicolor                 6.7               0.424
    3 virginica                  6.05              0.354
    
    1. count 统计某列的 unique
    count(test,Species)
    # A tibble: 3 x 2
      Species        n
      <fct>      <int>
    1 setosa         2
    2 versicolor     2
    3 virginica      2
    

    Manage Relational data

    处理表连接时,不要引入 factor

    1. 内连接
    test1 <- data.frame(x= c('b','e','f','x'),z= c('A','B','C','D'),stringsAsFactors = F)
    test1
      x z
    1 b A
    2 e B
    3 f C
    4 x D
    test2 <- data.frame(x= c('a','b','c','d','e','f'),y=c(1,2,3,4,5,6),stringsAsFactors = F)
    test2
      x y
    1 a 1
    2 b 2
    3 c 3
    4 d 4
    5 e 5
    6 f 6
    inner_join(test1,test2,by = 'x')
      x z y
    1 b A 2
    2 e B 5
    3 f C 6
    
    1. 左连接
    left_join(test1,test2,by='x')
      x z  y
    1 b A  2
    2 e B  5
    3 f C  6
    4 x D NA
    
    1. 全连接
    full_join(test1,test2,by='x')
      x    z  y
    1 b    A  2
    2 e    B  5
    3 f    C  6
    4 x    D NA
    5 a <NA>  1
    6 c <NA>  3
    7 d <NA>  4
    
    1. 半连接
    semi_join(x= test1,y= test2,by = 'x')
      x z
    1 b A
    2 e B
    3 f C
    
    1. 反连接
    anti_join(x=test2,y=test1,by='x')
      x y
    1 a 1
    2 c 3
    3 d 4
    
    1. 简单合并
    test1 <- data.frame(x= c(1,2,3,4),y=c(10,20,30,40))
    test1
      x  y
    1 1 10
    2 2 20
    3 3 30
    4 4 40
    test2 <- data.frame(x=c(5,6),y=c(50,60))
    test2
      x  y
    1 5 50
    2 6 60
    test3 <- data.frame(z=c(100,200,300,400))
    test3
        z
    1 100
    2 200
    3 300
    4 400
    bind_rows(test1,test2)
      x  y
    1 1 10
    2 2 20
    3 3 30
    4 4 40
    5 5 50
    6 6 60
    bind_cols(test1,test3)
      x  y   z
    1 1 10 100
    2 2 20 200
    3 3 30 300
    4 4 40 400
    

    相关文章

      网友评论

        本文标题:Day 6 - Learning R package

        本文链接:https://www.haomeiwen.com/subject/axbhyhtx.html