百度上有很多可以实践的项目,PaddlePaddle有很多官方模型,每个模型均可fork后运行。最近运行了手写数字识别项目,该项目是计算机视觉入门项目,简单易学,且每个步骤后都有注释,运行代码的页面也非常简洁。在此记录一下,部分内容摘自百度的手写数字识别项目。
本实践使用多层感知器训练(DNN)模型,用于预测手写数字图片。
image实践总体步骤和过程
实践总体过程和步骤如下图
image首先导入必要的包
numpy---------->python第三方库,用于进行科学计算
PIL------------> Python Image Library,python第三方图像处理库
matplotlib----->python的绘图库 pyplot:matplotlib的绘图框架
os------------->提供了丰富的方法来处理文件和目录
In[1]
#导入需要的包
import numpy as np
import paddle as paddle
import paddle.fluid as fluid
from PIL import Image
import matplotlib.pyplot as plt
import os
Step1 准备数据
(1)数据集介绍
MNIST数据集包含60000个训练集和10000测试数据集。分为图片和标签,图片是28*28的像素矩阵,标签为0~9共10个数字。
image(2)train_reader和test_reader
paddle.dataset.mnist.train()和test()分别用于获取mnist训练集和测试集
paddle.reader.shuffle()表示每次缓存BUF_SIZE个数据项,并进行打乱
paddle.batch()表示每BATCH_SIZE组成一个batch
(3)打印出数据。用print(sampledata)。PaddlePaddle接口提供的数据已经经过了归一化、居中等处理。
In[56]
BUF_SIZE=512
BATCH_SIZE=128
#用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mnist.train(),
buf_size=BUF_SIZE),
batch_size=BATCH_SIZE)
#用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
test_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mnist.test(),
buf_size=BUF_SIZE),
batch_size=BATCH_SIZE)
#用于打印,查看mnist数据
train_data=paddle.dataset.mnist.train();
sampledata=next(train_data())
print(sampledata)
Step2.网络配置
以下的代码判断就是定义一个简单的多层感知器,一共有三层,两个大小为100的隐层和一个大小为10的输出层,因为MNIST数据集是手写0到9的灰度图像,类别有10个,所以最后的输出大小是10。最后输出层的激活函数是Softmax,所以最后的输出层相当于一个分类器。加上一个输入层的话,多层感知器的结构是:输入层-->>隐层-->>隐层-->>输出层。
imageIn[57]
# 定义多层感知器
def multilayer_perceptron(input):
# 第一个全连接层,激活函数为ReLU
hidden1 = fluid.layers.fc(input=input, size=100, act='relu')
# 第二个全连接层,激活函数为ReLU
hidden2 = fluid.layers.fc(input=hidden1, size=100, act='relu')
# 以softmax为激活函数的全连接输出层,输出层的大小必须为数字的个数10
prediction = fluid.layers.fc(input=hidden2, size=10, act='softmax')
return prediction
(2)定义数据层
输入的是图像数据。图像是 28 * 28 的灰度图,所以输入的形状是[1, 28, 28],如果图像是32*32的彩色图,那么输入的形状是[3. 32, 32],因为灰度图只有一个通道,而彩色图有RGB三个通道。
In[58]
# 输入的原始图像数据,大小为1*28*28
image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')#单通道,28*28像素值
# 标签,名称为label,对应输入图片的类别标签
label = fluid.layers.data(name='label', shape=[1], dtype='int64') #图片标签
(3)获取分类器
In[12]
# 获取分类器
predict = multilayer_perceptron(image)
(4)定义损失函数和准确率
这次使用的是交叉熵损失函数,该函数在分类任务上比较常用。
定义了一个损失函数之后,还有对它求平均值,训练程序必须返回平均损失作为第一个返回值,因为它会被后面反向传播算法所用到。。
同时我们还可以定义一个准确率函数,这个可以在我们训练的时候输出分类的准确率。
In[14]
#使用交叉熵损失函数,描述真实样本标签和预测概率之间的差值
cost = fluid.layers.cross_entropy(input=predict, label=label)
# 使用类交叉熵函数计算predict和label之间的损失函数
avg_cost = fluid.layers.mean(cost)
# 计算分类准确率
acc = fluid.layers.accuracy(input=predict, label=label)
(5)定义优化函数
这次我们使用的是Adam优化方法,同时指定学习率为0.001
In[16]
#使用Adam算法进行优化, learning_rate 是学习率(它的大小与网络的训练收敛速度有关系)
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
在上述模型配置完毕后,得到两个fluid.Program:fluid.default_startup_program() 与fluid.default_main_program() 配置完毕了。
参数初始化操作会被写入fluid.default_startup_program()
fluid.default_main_program()用于获取默认或全局main program(主程序)。该主程序用于训练和测试模型。fluid.layers 中的所有layer函数可以向 default_main_program 中添加算子和变量。default_main_program 是fluid的许多编程接口(API)的Program参数的缺省值。例如,当用户program没有传入的时候, Executor.run() 会默认执行 default_main_program 。
Step3.模型训练 and Step4.模型评估
(1)创建训练的Executor
首先定义运算场所 fluid.CPUPlace()和 fluid.CUDAPlace(0)分别表示运算场所为CPU和GPU
Executor:接收传入的program,通过run()方法运行program。
In[18]
# 定义使用CPU还是GPU,使用CPU时use_cuda = False,使用GPU时use_cuda = True
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# 获取测试程序
test_program = fluid.default_main_program().clone(for_test=True)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
(2)告知网络传入的数据分为两部分,第一部分是image值,第二部分是label值
DataFeeder负责将数据提供器(train_reader,test_reader)返回的数据转成一种特殊的数据结构,使其可以输入到Executor中。
In[20]
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
(3)展示模型训练曲线
In[22]
all_train_iter=0
all_train_iters=[]
all_train_costs=[]
all_train_accs=[]
def draw_train_process(title,iters,costs,accs,label_cost,lable_acc):
plt.title(title, fontsize=24)
plt.xlabel("iter", fontsize=20)
plt.ylabel("cost/acc", fontsize=20)
plt.plot(iters, costs,color='red',label=label_cost)
plt.plot(iters, accs,color='green',label=lable_acc)
plt.legend()
plt.grid()
plt.show()
(4)训练并保存模型
训练需要有一个训练程序和一些必要参数,并构建了一个获取训练过程中测试误差的函数。必要参数有executor,program,reader,feeder,fetch_list。
executor表示之前创建的执行器
program表示执行器所执行的program,是之前创建的program,如果该项参数没有给定的话则默认使用defalut_main_program
reader表示读取到的数据
feeder表示前向输入的变量
fetch_list表示用户想得到的变量
In[24]
EPOCH_NUM=2
model_save_dir = "/home/aistudio/work/hand.inference.model"
for pass_id in range(EPOCH_NUM):
# 进行训练
for batch_id, data in enumerate(train_reader()): #遍历train_reader
train_cost, train_acc = exe.run(program=fluid.default_main_program(),#运行主程序
feed=feeder.feed(data), #给模型喂入数据
fetch_list=[avg_cost, acc]) #fetch 误差、准确率
all_train_iter=all_train_iter+BATCH_SIZE
all_train_iters.append(all_train_iter)
all_train_costs.append(train_cost[0])
all_train_accs.append(train_acc[0])
# 每200个batch打印一次信息 误差、准确率
if batch_id % 200 == 0:
print('Pass:%d, Batch:%d, Cost:%0.5f, Accuracy:%0.5f' %
(pass_id, batch_id, train_cost[0], train_acc[0]))
# 进行测试
test_accs = []
test_costs = []
#每训练一轮 进行一次测试
for batch_id, data in enumerate(test_reader()): #遍历test_reader
test_cost, test_acc = exe.run(program=test_program, #执行训练程序
feed=feeder.feed(data), #喂入数据
fetch_list=[avg_cost, acc]) #fetch 误差、准确率
test_accs.append(test_acc[0]) #每个batch的准确率
test_costs.append(test_cost[0]) #每个batch的误差
# 求测试结果的平均值
test_cost = (sum(test_costs) / len(test_costs)) #每轮的平均误差
test_acc = (sum(test_accs) / len(test_accs)) #每轮的平均准确率
print('Test:%d, Cost:%0.5f, Accuracy:%0.5f' % (pass_id, test_cost, test_acc))
#保存模型
# 如果保存路径不存在就创建
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
print ('save models to %s' % (model_save_dir))
fluid.io.save_inference_model(model_save_dir, #保存推理model的路径
['image'], #推理(inference)需要 feed 的数据
[predict], #保存推理(inference)结果的 Variables
exe) #executor 保存 inference model
print('训练模型保存完成!')
draw_train_process("training",all_train_iters,all_train_costs,all_train_accs,"trainning cost","trainning acc")
Step5.模型预测
(1)图片预处理
在预测之前,要对图像进行预处理。
首先进行灰度化,然后压缩图像大小为28*28,接着将图像转换成一维向量,最后再对一维向量进行归一化处理。
In[26]
def load_image(file):
im = Image.open(file).convert('L') #将RGB转化为灰度图像,L代表灰度图像,像素值在0~255之间
im = im.resize((28, 28), Image.ANTIALIAS) #resize image with high-quality 图像大小为28*28
im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)#返回新形状的数组,把它变成一个 numpy 数组以匹配数据馈送格式。
# print(im)
im = im / 255.0 * 2.0 - 1.0 #归一化到【-1~1】之间
return im
(2)使用Matplotlib工具显示这张图像。
In[28]
infer_path='/home/aistudio/data/data1910/infer_3.png'
img = Image.open(infer_path)
plt.imshow(img) #根据数组绘制图像
plt.show() #显示图像
(3)创建预测用的Executer
In[30]
infer_exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
(4)开始预测
通过fluid.io.load_inference_model,预测器会从params_dirname中读取已经训练好的模型,来对从未遇见过的数据进行预测。
In[32]
# 加载数据并开始预测
with fluid.scope_guard(inference_scope):
#获取训练好的模型
#从指定目录中加载 推理model(inference model)
[inference_program, #推理Program
feed_target_names, #是一个str列表,它包含需要在推理 Program 中提供数据的变量的名称。
fetch_targets] = fluid.io.load_inference_model(model_save_dir,#fetch_targets:是一个 Variable 列表,从中我们可以得到推断结果。model_save_dir:模型保存的路径
infer_exe) #infer_exe: 运行 inference model的 executor
img = load_image(infer_path)
results = infer_exe.run(program=inference_program, #运行推测程序
feed={feed_target_names[0]: img}, #喂入要预测的img
fetch_list=fetch_targets) #得到推测结果,
# 获取概率最大的label
lab = np.argsort(results) #argsort函数返回的是result数组值从小到大的索引值
#print(lab)
print("该图片的预测结果的label为: %d" % lab[0][0][-1]) #-1代表读取数组中倒数第一列
网友评论