torch.nn.Parameter是torch.Tensor的子类。
其主要作用是将不可训练的tensor变成可训练的参数,并将其绑定到module里面。
它与torch.Tensor的区别就是nn.Parameter的对象会被被加入到module自带的parameter()这个迭代器中去(见后面Linear例子);而module中非nn.Parameter对象的普通tensor是不在parameter()这个迭代器中的。
注意:nn.Parameter的对象的requires_grad属性的默认值是True,即可被训练的,这与torth.Tensor对象的默认值相反。
用法:
torch.nn.Parameter(Tensor data, bool requires_grad)
其中:data为传入Tensor类型参数,requires_grad默认值为True,表示可训练,False表示不可训练。
在nn.Module类中,也是使用nn.Parameter来对每一个module的参数进行初始化的,以torch.nn.Linear类为例:
class Linear(Module):
r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
additional dimensions and :math:`H_{in} = \text{in\_features}`
- Output: :math:`(N, *, H_{out})` where all but the last dimension
are the same shape as the input and :math:`H_{out} = \text{out\_features}`.
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in\_features})`. The values are
initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
:math:`k = \frac{1}{\text{in\_features}}`
Examples::
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
__constants__ = ['in_features', 'out_features']
def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def forward(self, input):
return F.linear(input, self.weight, self.bias)
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
可见,在初始化函数__init__()中,代码:
self.weight = Parameter(torch.Tensor(out_features, in_features))
通过nn.Parameter()对象对weights进行了初始化,bias也是一样。
(与torch.tensor([1,2,3],requires_grad=True)的区别,这个只是将参数变成可训练的,并没有绑定在module的parameter()列表中。)
我们生成一个Linear对象模型,看看其parameter列表中是否含有weigs和bias这两个可训练参数:
import torch.nn as nn
my_linear = nn.Linear(2,3) # 生成一个线性层对象(这也是一个完整的module)
for i in my_linear.named_parameters(): # 查看该module包含多少个可训练的参数(也可用*.parameters())
print(i)
输出:
('weight', Parameter containing:
tensor([[-0.2682, -0.5847],
[ 0.6815, -0.4122],
[ 0.2677, 0.2913]], requires_grad=True))
('bias', Parameter containing:
tensor([ 0.0536, -0.3389, -0.6452], requires_grad=True))
网友评论