Medical Image File Formats
Medical Image File Formats 2014 Apr
DCM
Relevant Software
SimpleITK读取并显示dcm文件
Presentation
读取单张dcm文件
import SimpleITK as sitk
import numpy as np
import matplotlib.pyplot as plt
image = sitk.ReadImage(r"./729427_20181010_CT_5_249_011.dcm") # type(image) <class 'SimpleITK.SimpleITK.Image'>
image_array = np.squeeze(sitk.GetArrayFromImage(image)) # type(image_array) ->> <class 'numpy.ndarray'> image_array.shape ->> (512, 512)
plt.imshow(image_array)
plt.show()
读取dcm文件夹
import SimpleITK as sitk
def read_dicom(PathDicom):
# new ImageSeriesReader object
series_reader = sitk.ImageSeriesReader()
# GetGDCMSeriesFileNames
dicom_names = series_reader.GetGDCMSeriesFileNames(PathDicom)
# 通过之前获取到的序列的切片路径来读取该序列
series_reader.SetFileNames(dicom_names)
# 获取该序列对应的3D图像
3D_image = series_reader.Execute()
# sitk.GetArrayFromImage
image_array = sitk.GetArrayFromImage(3D_image)
return image_array, 3D_image
DICOM 数据处理 SimpleITK 需要注意的是,SimpleITK读取的图像数据的坐标顺序为zyx,即从多少张切片到单张切片的宽和高;而据SimpleITK Image获取的origin和spacing的坐标顺序则是xyz。这些需要特别注意。
PyQt5_DcmViewer_3d
-
scipy.misc.imresize(gray,(200,200))
、os.walk
、SimpleITK
、FigureCanvas
- Reference Linking: Python获取指定文件夹下的文件名、PyQt5 Matplotlib
- DcmViewer_3d.py code
pydicom库
读取患者信息
import pydicom
from pydicom.data import get_testdata_files
# filename = "./dcom_sample/729427_20181010_CT_5_249_001.dcm"
filename = get_testdata_files("MR_small.dcm")[0]
ds = pydicom.dcmread(filename) # plan dataset
详情见 👇
>>> import pydicom
>>> from pydicom.data import get_testdata_files
>>> filename = "100151270_20180808_CT_1_0000.dcm"
>>> ds = pydicom.dcmread(filename)
>>> ds
(0008, 0008) Image Type CS: ['DERIVED', 'PRIMARY', 'AXIAL']
(0008, 0016) SOP Class UID UI: CT Image Storage
(0008, 0018) SOP Instance UID UI: 1.2.840.113770.2.1.1374404734.2110896889.550030876
(0008, 0020) Study Date DA: '20180808'
...
(0010, 0010) Patient's Name PN: 'SUN^WEI^(??¨¬?^)'
(0010, 0020) Patient ID LO: '100151270'
(0010, 0030) Patient's Birth Date DA: '19670329'
(0010, 0040) Patient's Sex CS: 'M'
...
(0020, 0011) Series Number IS: "1"
(0020, 0012) Acquisition Number IS: "0"
(0020, 0013) Instance Number IS: "0"
(0020, 0032) Image Position (Patient) DS: ['-162.1999969', '-165.0000000', '-281.5000000']
...
(0028, 0010) Rows US: 512
(0028, 0011) Columns US: 512
(0028, 0030) Pixel Spacing DS: ['0.64453101', '0.64453101']
...
>>> ds['00100020'] # 使用TagID读取文件(患者)信息
(0010, 0020) Patient ID LO: '100151270'
>>> ds['00100020'].value
'100151270'
>>>
修改dcm_InstanceNumber
import pydicom
def resetInstanceNumber(file_dir):
for root, dirs, files in os.walk(file_dir):
for file in sorted(files):
file_root_path = os.path.join(root, file)
ds = pydicom.dcmread(file_root_path)
ds.InstanceNumber = len(files) - ds.InstanceNumber - 1
ds.save_as(file_root_path)
- 常用信息:姓名(ds.PatientName)、病人ID(ds.PatientID)、出生日期(ds.PatientBirthDate)、性别(ds.PatientSex)、治疗日期(StudyDate)、数据模态(Modality)、序列数(SeriesNumber)、机构名称(ds.InstitutionName)、(设备)生产厂商(ds.Manufacturer)、切片厚度(ds.SliceThickness)、像素间距(ds.PixelSpacing)、切片序号(InstanceNumber) 可阅读 DICOM之常用Tag
设置窗口窗位
参考:对于CT图像设置窗宽窗位
def setDicomWinWidthWinCenter(img_data, winwidth, wincenter, rows, cols):
img_temp = img_data
img_temp.flags.writeable = True
min = (2 * wincenter - winwidth) / 2.0 + 0.5
max = (2 * wincenter + winwidth) / 2.0 + 0.5
dFactor = 255.0 / (max - min)
for i in numpy.arange(rows):
for j in numpy.arange(cols):
img_temp[i, j] = int((img_temp[i, j]-min)*dFactor)
min_index = img_temp < 0
img_temp[min_index] = 0
max_index = img_temp > 255
img_temp[max_index] = 255
return img_temp
INTERESTING CODE 👇
Others
- 文件命名不规范,以
PatientID_StudyDate_Modality_SeriesNumber_InstanceNumber
为例进行重命名
# 依据InstanceNumber重命名文件
for root, dirs, files in os.walk(file_dir):
for file in files:
file_root_path = os.path.join(root, file)
ds = pydicom.dcmread(file_root_path)
new_name = str(ds.PatientID) + "_" + str(ds.StudyDate) + "_" + str(ds.Modality) + "_" + str(ds.SeriesNumber) + "_" + str(ds.InstanceNumber).zfill(4) + ".dcm"
os.rename(file_root_path,os.path.join(root,new_name))
NRRD
Relevant Software
-
Slicer4
- 注意事项:无法打开路径中含中文的.nrrd文件
pynrrd库
pynrrd_description 👉 Example usage 注:when write.data.shape(512,512,115)
耗时近310s
import numpy as np
import nrrd
# Some sample numpy data
data = np.zeros((5,4,3,2))
filename = 'testdata.nrrd'
# Write to a NRRD file
nrrd.write(filename, data)
# Read the data back from file
readdata, header = nrrd.read(filename)
print(readdata.shape)
print(header)
visualization 👇
from PIL import Image
import numpy as np
import nrrd
nrrd_filename = './testdata_even.nrrd'
nrrd_data, nrrd_options = nrrd.read(nrrd_filename)
# visualization
nrrd_image = Image.fromarray(nrrd_data[:,:,29]*1.5) #nrrd_data[:,:,29] 表示截取第30张切片
nrrd_image.show() # 显示这图片
# save nrrd_image to "image.png"
nrrd_image = nrrd_image.convert("RGB")
nrrd_array = np.asarray(nrrd_image)
nrrd_image.save("./nrrd_image.png", "PNG")
发现visualization的图片呈左旋转显示效果,现使其正常显示
nrrd_data_29 = nrrd_data[:,:,29]*1.5
nrrd_data_29 = np.transpose(nrrd_data_29,(1,0))
nrrd_image = Image.fromarray(nrrd_data_29) #nrrd_data[:,:,29] 表示截取第30张切片
nrrd_image.show() # 显示这图片
write
- 方式一:
nrrd.write('save_filename.nrrd', write_array)
- 方式二:
sitk.WriteImage(new_image, save_filename)
nifti数据(nii)
nibabel库
import nibabel as nib
import numpy as np
import matplotlib.pyplot as plt
# show the nii_data.shape
nii_file = "ADNI_011_S_0010_MR_MPR__GradWarp__B1_Correction__N3__Scaled_Br_20061208114538147_S8800_I32270.nii"
data = nib.load(nii_file) # data.shape (192, 192, 160) # data.affine.shape (4, 4)
img = data.get_fdata()
img = np.squeeze(img) # img.shape (192, 192, 160)
# print(data.header) #数据头信息
# 获取slice信息生成图像
def show_img(slices):
fig, axes = plt.subplots(1, len(slices))
for i, slice in enumerate(slices):
axes[i].imshow(slice.T, cmap="gray", origin="lower")
#读取nifti文件中的slice数据
data = nib.load(nii_file)
img = data.get_fdata()
#获取单张slice数据
slice_0 = img[26, :, :]
slice_1 = img[:, 30, :]
slice_2 = img[:, :, 16]
#生成图表
show_img([slice_0, slice_1, slice_2])
plt.suptitle("show slice image")
plt.show()
-
nib.load()
读取文件,会将图像向左旋转90° (一般不推荐使用,使用sitk.ReadImage()
即可# z,y,x
)
data.header 👇
<class 'nibabel.nifti1.Nifti1Header'> object, endian='>'
sizeof_hdr : 348
data_type : b''
db_name : b'011_S_0010'
...
quatern_b : 0.70710677
quatern_c : -1.0713779e-09
quatern_d : -0.70710677
qoffset_x : 94.87749
qoffset_y : 165.8339
qoffset_z : 115.27711
...
Convert Format
dcm2nrrd
file_path = 'xxx' # Dicom序列所在的文件夹路径
# assign series_file_names
series_file_names = sitk.ImageSeriesReader.GetGDCMSeriesFileNames(file_path)
series_file_names_list = list(series_file_names)
series_file_names_list.sort()
# assign file_names
file_names = tuple(series_file_names_list)
# new ImageSeriesReader object
series_reader = sitk.ImageSeriesReader()
# 通过之前获取到的序列的切片路径来读取该序列
series_reader.SetFileNames(file_names)
# 获取该序列对应的3D图像
image3D = series_reader.Execute()
# 查看该3D图像的尺寸
print("image3D.GetSize()",image3D.GetSize())
# 将序列保存为单个的DCM或者NRRD文件
# sitk.WriteImage(image3D, 'img3D.dcm')
save_filename = os.path.join(save_filepath, 'xxx.nrrd')
sitk.WriteImage(image3D, save_filename)
nrrd2nrrd
import SimpleITK as sitk
filename = '7 Vein 1.5 B30f.nrrd'
save_filename = 'tt.nrrd'
image = sitk.ReadImage(filename)
image_array = sitk.GetArrayFromImage(image) # z,y,x
new_image = sitk.GetImageFromArray(image_array)
# Set new_image_Direction_Info
new_Direction = list(image.GetDirection())
new_Direction[-1] *= 2
new_image.SetDirection(tuple(new_Direction))
# Set new_image Other Space_Info
new_image.SetOrigin(image.GetOrigin())
new_image.SetSpacing(image.GetSpacing())
sitk.WriteImage(new_image, save_filename)
dcm2nii
import SimpleITK as sitk
import numpy as np
def load_dcm_array(dicom):
if dicom is None:
raise Exception('dicom is %s' % str(dicom))
dcm_array = sitk.GetArrayFromImage(dicom)
if '0028|1050' in dicom.GetMetaDataKeys():
wnd_center = float(dicom.GetMetaData('0028|1050')) # 窗宽
wnd_width = float(dicom.GetMetaData('0028|1051')) # 窗位
else:
wnd_center = 32768
wnd_width = 65535
gH = wnd_center + wnd_width / 2
gL = wnd_center - wnd_width / 2
# HU值 # "归一"至0-255
dcm_array = (254 * (dcm_array - gL) / wnd_width) * (gH >= dcm_array) * (gL <= dcm_array) + 255 * (gH < dcm_array)
dcm_array = np.squeeze(dcm_array) # (1, H, W) → (H, W)
return dcm_array.astype(int)
def read_dicom(dicom_dir):
# 1. 使用正确的顺序读取dcm文件
series_reader = sitk.ImageSeriesReader()
dicom_names = series_reader.GetGDCMSeriesFileNames(dicom_dir)
dcm_img_list = [sitk.ReadImage(f) for f in dicom_names]
# 2. 使用窗宽、窗位,计算HU,消除灰色背景
image_array = np.array([load_dcm_array(dcm_img) for dcm_img in dcm_img_list], dtype='float')
return image_array
if __name__ == '__main__':
dcm_dir = '605/P00057229/CT'
array = read_dicom(dcm_dir)
new_image = sitk.GetImageFromArray(array)
sitk.WriteImage(new_image, 'CT_HU.nii')
Summary
读取
dcm
注意:文件序列名称是否与InstanceNumber一致,且检查是否为有效排序(是否需要文件名补0)
方式一:(不推荐)
import pydicom
ds = pydicom.dcmread('xxxx.dcm')
方式二:
import SimpleITK as sitk
image = sitk.ReadImage(file_path)
image_array = sitk.GetArrayFromImage(image) # z,y,x # Ex.(1,512,512)
方式三:(批量读取)
import SimpleITK as sitk
def read_dicom(PathDicom):
# new ImageSeriesReader object
series_reader = sitk.ImageSeriesReader()
# GetGDCMSeriesFileNames
dicom_names = series_reader.GetGDCMSeriesFileNames(PathDicom)
# 通过之前获取到的序列的切片路径来读取该序列
series_reader.SetFileNames(dicom_names)
# 获取该序列对应的3D图像
image_3D = series_reader.Execute()
# sitk.GetArrayFromImage
image_array = sitk.GetArrayFromImage(image_3D)
return image_array, image_3D
nrrd
方式一:
import nrrd
ori_nrrd, nrrd_header = nrrd.read('xxxx.nrrd')
方式二:
import SimpleITK as sitk
image = sitk.ReadImage(file_path)
image_array = sitk.GetArrayFromImage(image) # z,y,x # Ex. (230,512,512) # (N, H, W)
写入
dcm
import pydicom
ds = pydicom.dcmread(file_root_path)
ds.save_as(file_root_path)
nrrd
方式一: (慢)
import nrrd
nrrd.write(filename, data, header)
方式二:
import SimpleITK as sitk
sitk.WriteImage(new_image, save_filename)
可视化
方式一:
from PIL import Image
nrrd_image = Image.fromarray(image_array) # image_array is 2D
nrrd_image.show()
方式二:
import matplotlib.pyplot as plt
plt.imshow(image_array) # image_array is 2D
plt.show()
网友评论