美文网首页
利用mnist数据集的demo来做识别单张图片数字

利用mnist数据集的demo来做识别单张图片数字

作者: 河南骏 | 来源:发表于2018-12-17 15:46 被阅读0次

    最近领导让我做图片识别,把这两天的工作记录一下吧,虽然中间做的磕磕碰碰,但是一个好的开始,加油!好了不灌鸡汤了,let's  show!

    在做图片识别之前,需要对图片做处理,利用的是opencv(python 环境需要装)

    比如我们要识别的电表的数字

    下面是对该图片的做opencv处理,源代码如下:

    # coding=utf-8

    from __future__ import division  #整数相除为浮点数

    import cv2

    import numpy as np

    import os

    img = cv2.imread('testset/img4.PNG')

    #cv2.imshow('Original', img)

    cv2.waitKey(0)

    #cv2.imwrite('save/img4.PNG',img)

    # 灰度处理

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    #cv2.imshow('Gray', gray)

    cv2.waitKey(0)

    #cv2.imwrite('save/gray.PNG',gray)

    # 均值滤波

    # median = cv2.medianBlur(gray, 3)

    blur = cv2.blur(img, (4, 4))

    #cv2.imshow('Blur', blur)

    cv2.waitKey(0)

    #cv2.imwrite('save/blur.PNG',blur)

    # Canny边缘提取

    canny = cv2.Canny(blur, 300, 450)

    #cv2.imshow('Canny', canny)

    cv2.waitKey(0)

    #cv2.imwrite('save/canny.PNG',canny)

    # 二值处理

    #ret, thresh = cv2.threshold(canny, 90, 255, cv2.THRESH_BINARY)

    #kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

    #closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

    # 膨胀操作

    kernel = np.uint8(np.ones((7, 7)))

    dilate = cv2.dilate(canny, kernel)

    # 腐蚀操作

    erode = cv2.erode(dilate,(9,9))

    #cv2.imshow('Dilate', erode)

    cv2.waitKey(0)

    #cv2.imwrite('save/dilate.PNG',dilate)

    (image, cnts, _) = cv2.findContours(dilate.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    for index, c in enumerate(cnts):

        rect = cv2.minAreaRect(c)

        box = np.int0(cv2.boxPoints(rect))

        # draw a bounding box arounded the detected number and display the image

        cv2.drawContours(img, [box], -1, (0, 255, 0), 0)

        Xs = [i[0] for i in box]

        Ys = [i[1] for i in box]

        x1 = min(Xs)

        x2 = max(Xs)

        y1 = min(Ys)

        y2 = max(Ys)

        hight = y2 - y1

        width = x2 - x1

        cropImg = image[y1:y1+hight, x1:x1+width]

        cv2.imshow(str(i + 1), cropImg)

        ######    按顺序保存图片

        for j in i:

            cv2.imwrite('save/%d.PNG' % i[0], cropImg)

        ######

        cv2.waitKey(0)

    #cv2.imshow('Image', img)

    cv2.waitKey(0)

    #cv2.imwrite('save/img.PNG',img)

    #图像统一预处理成28*28

    imgs=os.listdir('save')

    num = len(imgs)

    for index,i in enumerate(imgs):

        img=cv2.imread('save/'+i,0)

        #print img.shape

        width=img.shape[1]

        height=img.shape[0]

        fx=28/width

        fy=28/height

        res = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_CUBIC) #图像缩放成28x28

        cv2.imwrite('save/%d.png' % (index), res)

    处理后的结果如下:需要说明一下,对图片数字的小数点,我们还没有做处理,在此先搁浅,以后写出来,后补!

    下面就是我们的重头戏了,利用的是两层cnn做训练并识别图片,训练的模型是mnist的demo,在这里我们是保存了该训练的模型,talk is cheap ,show you my code!

    import tensorflow as tf

    import tensorflow.examples.tutorials.mnist.input_data as input_data

    import os

    MODEL_SAVE_PATH="model_data/"

    MODEL_NAME="save_net.ckpt"

    def weight_variable(shape):

        initial=tf.truncated_normal(shape,stddev=0.1)

        return tf.Variable(initial)

    def bias_variable(shape):

        initial=tf.constant(0.1,shape=shape)

        return tf.Variable(initial)

    def conv2d(x,W):

        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding="SAME")

    def max_pool_2x2(x):

        return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

    with tf.Session() as sess:

        mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

        x = tf.placeholder(tf.float32, [None, 784])

        w_conv1=weight_variable([5,5,1,32])

        b_conv1=bias_variable([32])

        x_image=tf.reshape(x,[-1,28,28,1])

        y_ = tf.placeholder("float", [None, 10])

        h_conv1=tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)

        h_pool1=max_pool_2x2(h_conv1)

        w_conv2=weight_variable([5,5,32,64])

        b_conv2=bias_variable([64])

        h_conv2=tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2)

        h_pool2=max_pool_2x2(h_conv2)

        w_fc1=weight_variable([7*7*64,1024])

        b_fc1=bias_variable([1024])

        h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])

        h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1)

        keep_prob=tf.placeholder("float")

        h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

        w_fc2=weight_variable([1024,10])

        b_fc2=bias_variable([10])

        y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2)

        cross_entropy=-tf.reduce_sum(y_*tf.log(y_conv))

        train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

        saver = tf.train.Saver()

        correct_prediction=tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))

        accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))

        sess.run(tf.global_variables_initializer())

        for i in range(2000):

            batch=mnist.train.next_batch(50)

            if i%100==0:

                train_accuracy=accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0})

                print("step %d,training accuracy %g" % (i,train_accuracy))

            train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})

        print("test accuracy %g" % accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))

        saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), write_meta_graph=False)

    接下来就是利用训练的模型来做识别了,plz see

    # coding:utf-8

    import tensorflow as tf

    import numpy as np

    import cv2

    #初始化单个卷积核上的参数

    def weight_variable(shape):

        initial = tf.truncated_normal(shape, stddev=0.1)

        return tf.Variable(initial)

    #初始化单个卷积核上的偏置值

    def bias_variable(shape):

        initial = tf.constant(0.1, shape=shape)

        return tf.Variable(initial)

    #输入特征x,用卷积核W进行卷积运算,strides为卷积核移动步长,

    #padding表示是否需要补齐边缘像素使输出图像大小不变

    def conv2d(x, W):

        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

    #对x进行最大池化操作,ksize进行池化的范围,

    def max_pool_2x2(x):

        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

    #

        # 定义会话

    with tf.Session() as sess:

        #声明输入图片数据,类别

        x = tf.placeholder(tf.float32,[None,784])

        x_img = tf.reshape(x , [-1,28,28,1])

        W_conv1 = weight_variable([5, 5, 1, 32])

        b_conv1 = bias_variable([32])

        #进行卷积操作,并添加relu激活函数

        h_conv1 = tf.nn.relu(conv2d(x_img,W_conv1) + b_conv1)

        #进行最大池化

        h_pool1 = max_pool_2x2(h_conv1)

        W_conv2 = weight_variable([5,5,32,64])

        b_conv2 = bias_variable([64])

        # 同理第二层卷积层

        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

        h_pool2 = max_pool_2x2(h_conv2)

        W_fc1 = weight_variable([7*7*64,1024])

        b_fc1 = bias_variable([1024])

        #将卷积的产出展开

        h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])

        #神经网络计算,并添加relu激活函数

        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)

        keep_prob = tf.placeholder(tf.float32)

        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

        W_fc2 = weight_variable([1024,10])

        b_fc2 = bias_variable([10])

        # 引用mnist训练好的保存的模型

        saver = tf.train.Saver(write_version=tf.train.SaverDef.V1)

        saver.restore(sess, 'model_data/save_net.ckpt')

        #输出层,使用softmax进行多分类

        y_conv=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)

        im = cv2.imread('save/img4_4.png', cv2.IMREAD_GRAYSCALE)

        im = cv2.resize(im, (28, 28), interpolation=cv2.INTER_CUBIC)

        img = cv2.GaussianBlur(im, (3, 3), 0)

        # 图片预处理

        # 数据从0~255转为-0.5~0.5

        img_gray = (im - (255 / 2.0)) / 255

        # img_gray = (im)/255

        # for i in range(28):

        #    for j in range(28):

        #        if img_gray[i][j]<=0.5:

        #            img_gray[i][j]=0

        #        else:

        #            img_gray[i][j]=1

        cv2.imshow('out',img_gray)

        cv2.waitKey(0)

        x_img = np.reshape(img_gray, [-1, 784])

        output = sess.run(y_conv , feed_dict = {x:x_img})

        print('the y_con :  ', '\n',output)

        print('the predict is : ', np.argmax(output))

    结果如下:

    这里的数字识别大致过程差不多就这样,虽然表面看起来很完美,但是还有些数字没有识别正确,我举的例子数字是都识别出来了,但是其他的数字还有点问题,这里在随后我解决了,再做补充吧。

    相关文章

      网友评论

          本文标题:利用mnist数据集的demo来做识别单张图片数字

          本文链接:https://www.haomeiwen.com/subject/bdkckqtx.html