线程池

作者: guideEmotion | 来源:发表于2019-05-18 09:04 被阅读0次

    参考:深入理解 Java 线程池:ThreadPoolExecutor

    一 Executor接口

    提供一种将”任务提交”与”任务如何运行”分离开来的机制。

    public interface Executor {
        void execute(Runnable command);
    }
    

    用法

    Thread t = new Thread();
    executor.execute(t);
    

    对于不同的Executor实现,execute()方法可能是创建一个新线程并立即启动,也有可能是使用已有的工作线程来运行传入的任务,也可能是根据设置线程池的容量或者阻塞队列的容量来决定是否要将传入的线程放入阻塞队列中或者拒绝接收传入的线程。

    二 ExecutorService接口

    ExecutorService接口继承自Executor接口,提供了管理终止的方法,以及可为跟踪一个或多个异步任务执行状况而生成 Future 的方法。增加了shutDown(),shutDownNow(),invokeAll(),invokeAny()和submit()等方法。如果需要支持即时关闭,也就是shutDownNow()方法,则任务需要正确处理中断

    三 ScheduledExecutorService接口

    ScheduledExecutorService扩展ExecutorService接口并增加了schedule方法。调用schedule方法可以在指定的延时后执行一个Runnable或者Callable任务。ScheduledExecutorService接口还定义了按照指定时间间隔定期执行任务的scheduleAtFixedRate()方法和scheduleWithFixedDelay()方法。

    四 ThreadPoolExecutor

    4.1 重要字段

    ThreadPoolExecutor继承自AbstractExecutorService,也是实现了ExecutorService接口。

        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        private static final int COUNT_BITS = Integer.SIZE - 3;
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
    
        // Packing and unpacking ctl
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        private static int ctlOf(int rs, int wc) { return rs | wc; }
    

    ctl:对线程池的运行状态和线程池中有效线程的数量进行控制的一个字段, 它包含两部分的信息: 线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount),这里可以看到,使用了Integer类型来保存,高3位保存runState,低29位保存workerCount
    COUNT_BITS :29(Integer.SIZE=32,32位,4个字节)
    CAPACITY:1左移29位减1(29个1),这个常量表示workerCount的上限值,大约是5亿。、

    4.2 线程池状态

    线程池一共有五种状态, 分别是:

    1. RUNNING :能接受新提交的任务,并且也能处理阻塞队列中的任务;
    2. SHUTDOWN:关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务。在线程池处于 RUNNING 状态时,调用 shutdown()方法会使线程池进入到该状态。(finalize() 方法在执行过程中也会调用shutdown()方法进入该状态);
    3. STOP:不能接受新任务,也不处理队列中的任务,会中断正在处理任务的线程。在线程池处于 RUNNING 或 SHUTDOWN 状态时,调用 shutdownNow() 方法会使线程池进入到该状态;
    4. TIDYING(整理中):如果所有的任务都已终止了,workerCount (有效线程数) 为0,线程池进入该状态后会调用 terminated() 方法进入TERMINATED 状态。
    5. TERMINATED:在terminated() 方法执行完后进入该状态,默认terminated()方法中什么也没有做。

    进入TERMINATED的条件如下

    • 线程池不是RUNNING状态;
    • 如果线程池状态是SHUTDOWN并且workerQueue为空;
    • workerCount为0;
    • 设置TIDYING状态成功。

    状态转换过程:

    image.png
    上图说明了STOP状态不会处理队列中的任务,STOP和SHUTDOWN都需要等workerCount (有效线程数) 为0

    4.3 ctl相关方法

    private static int runStateOf(int c)     { return c & ~CAPACITY; }//取前三位
    private static int workerCountOf(int c)  { return c & CAPACITY; }//取后29位
    private static int ctlOf(int rs, int wc) { return rs | wc; }//
    
    • runStateOf:获取运行状态;
    • workerCountOf:获取活动线程数;
    • ctlOf:获取运行状态和活动线程数的值。

    4.4 构造函数

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
    

    参数说明

    • corePoolSize:核心线程数量,当有新任务在execute()方法提交时,会执行以下判断:

      1. 如果运行的线程少于 corePoolSize,则创建新线程来处理任务,即使线程池中的其他线程是空闲的;
      2. 如果线程池中的线程数量大于等于 corePoolSize 且小于 maximumPoolSize,则只有当workQueue满时
        才创建新的线程去处理任务;
      3. 如果设置的corePoolSize 和 maximumPoolSize相同,则创建的线程池的大小是固定的,这时如果有新
        任务提交,若workQueue未满,则将请求放入workQueue中,等待有空闲的线程去从workQueue中取任务并处理;
      4. 如果运行的线程数量大于等于maximumPoolSize,这时如果workQueue已经满了,则通过handler所指定的策略来处理任务

      所以,任务提交时,判断的顺序为 corePoolSize --> workQueue --> maximumPoolSize

    • maximumPoolSize:最大线程数量;

    • workQueue:等待队列,当任务提交时,如果线程池中的线程数量大于等于corePoolSize(这里没有关注maximumPoolSize)的时候,把该任务封装成一个Worker对象放入等待队列;
      保存等待执行的任务的阻塞队列,当提交一个新的任务到线程池以后, 线程池会根据当前线程池中正在运行着的线程的数量来决定对该任务的处理方式,主要有以下几种处理方式:

      1. 直接切换:这种方式常用的队列是SynchronousQueue,但现在还没有研究过该队列,这里暂时还没法介绍;
      2. 使用无界队列:一般使用基于链表的阻塞队列LinkedBlockingQueue。如果使用这种方式,那么线程池中能够创建的最大线程数就是corePoolSize,而maximumPoolSize就不会起作用了(后面也会说到)。当线程池中所有的核心线程都是RUNNING状态时,这时一个新的任务提交就会放入等待队列中。
      3. 使用有界队列:一般使用ArrayBlockingQueue。使用该方式可以将线程池的最大线程数量限制为maximumPoolSize,这样能够降低资源的消耗,但同时这种方式也使得线程池对线程的调度变得更困难,因为线程池和队列的容量都是有限的值,所以要想使线程池处理任务的吞吐率达到一个相对合理的范围,又想使线程调度相对简单,并且还要尽可能的降低线程池对资源的消耗,就需要合理的设置这两个数量
        • 如果要想降低系统资源的消耗(包括CPU的使用率,操作系统资源的消耗,上下文环境切换的开销等), 可以设置较大的队列容量和较小的线程池容量, 但这样也会降低线程处理任务的吞吐量。
        • 如果提交的任务经常发生阻塞,那么可以考虑通过调用 setMaximumPoolSize() 方法来重新设定线程池的容量。
        • 如果队列的容量设置的较小,通常需要将线程池的容量设置大一点,这样CPU的使用率会相对的高一些。但如果线程池的容量设置的过大,则在提交的任务数量太多的情况下,并发量会增加,那么线程之间的调度就是一个要考虑的问题,因为这样反而有可能降低处理任务的吞吐量线程多了,上下文环境切换的开销也大了,不好说是否真的可以提高吞吐量
    • keepAliveTime:线程池维护线程所允许的空闲时间。当线程池中的线程数量大于corePoolSize的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了keepAliveTime;

    • threadFactory:它是ThreadFactory类型的变量,用来创建新线程。默认使用Executors.defaultThreadFactory() 来创建线程。使用默认的ThreadFactory来创建线程时,会使新创建的线程具有相同的NORM_PRIORITY优先级并且是非守护线程,同时也设置了线程的名称。

    • handler:它是RejectedExecutionHandler类型的变量,表示线程池的饱和策略。如果阻塞队列满了并且没有空闲的线程,这时如果继续提交任务,就需要采取一种策略处理该任务。线程池提供了4种策略:

      1. AbortPolicy:直接抛出异常,这是默认策略;
      2. CallerRunsPolicy:用调用者所在的线程来执行任务;
      3. DiscardOldestPolicy:丢弃阻塞队列中靠最前的任务,并执行当前任务;
      4. DiscardPolicy:直接丢弃任务;

    4.5 execute方法

    execute()方法用来提交任务,代码如下:

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * clt记录着runState和workerCount
         */
        int c = ctl.get();
        /*
         * workerCountOf方法取出低29位的值,表示当前活动的线程数;
         * 如果当前活动线程数小于corePoolSize,则新建一个线程放入线程池中;
         * 并把任务添加到该线程中。
         */
        if (workerCountOf(c) < corePoolSize) {
            /*
             * addWorker中的第二个参数表示限制添加线程的数量是根据corePoolSize来判断还是maximumPoolSize来判断;
             * 如果为true,根据corePoolSize来判断;
             * 如果为false,则根据maximumPoolSize来判断
             */
            if (addWorker(command, true))
                return;
            /*
             * 如果添加失败,则重新获取ctl值
             */
            c = ctl.get();
        }
        /*
         * 如果当前线程池是运行状态并且任务添加到队列成功
         */
        if (isRunning(c) && workQueue.offer(command)) {
            // 重新获取ctl值
            int recheck = ctl.get();
            // 再次判断线程池的运行状态,如果不是运行状态,由于之前已经把command添加到workQueue中了,
            // 这时需要移除该command
            // 执行过后通过handler使用拒绝策略对该任务进行处理,整个方法返回
            if (! isRunning(recheck) && remove(command))
                reject(command);
            /*
             * 获取线程池中的有效线程数,如果数量是0,则执行addWorker方法
             * 这里传入的参数表示:
             * 1. 第一个参数为null,表示在线程池中创建一个线程,但不去启动;
             * 2. 第二个参数为false,将线程池的有限线程数量的上限设置为maximumPoolSize,添加线程时根据maximumPoolSize来判断;
             * 如果判断workerCount大于0,则直接返回,在workQueue中新增的command会在将来的某个时刻被执行。
             */
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        /*
         * 如果执行到这里,有两种情况:
         * 1. 线程池已经不是RUNNING状态;
         * 2. 线程池是RUNNING状态,但workerCount >= corePoolSize并且workQueue已满。
         * 这时,再次调用addWorker方法,但第二个参数传入为false,将线程池的有限线程数量的上限设置为maximumPoolSize;
         * 如果失败则拒绝该任务
         */
        else if (!addWorker(command, false))
            reject(command);
    }
    

    方法说明

    1. workQueue.offer(command)
      这个是BlockingQueue的方法,向队列中添加元素。并且不会阻塞,返回true|false
    2. if (! isRunning(recheck) && remove(command))
      这里利用了短路与操作,如果第一个返回false,便不会继续执行后半段判断(如果线程池还是Running状态)。
      remove(command):将任务从executor的内部队列中移出,如果它还没有开始的话,那它就不会被执行
    3. reject(command)
    /**
         * Invokes the rejected execution handler for the given command.
         * Package-protected for use by ScheduledThreadPoolExecutor.
         */
        final void reject(Runnable command) {
            handler.rejectedExecution(command, this);
        }
    

    对给定的任务调用RejectedExecutionHandler(即让饱和策略来处理该任务)。

    过程说明
    在执行execute()方法时如果状态一直是RUNNING时,的执行过程如下:

    1. 如果 workerCount < corePoolSize,则创建并启动一个线程来执行新提交的任务;
    2. 如果workerCount >= corePoolSize,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中;
    3. 如果workerCount >= corePoolSize && workerCount < maximumPoolSize,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务;
    4. 如果workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务, 默认的处理方式是直接抛异常。

    这里要注意一下addWorker(null, false);,也就是创建一个线程,但并没有传入任务,因为任务已经被添加到workQueue中了,所以worker在执行的时候,会直接从workQueue中获取任务。所以,在workerCountOf(recheck) == 0时执行addWorker(null, false);也是为了保证线程池在RUNNING状态下必须要有一个线程来执行任务。


    image.png

    4.6 addWorker

    addWorker方法的主要工作是在线程池中创建一个新的线程并执行,firstTask参数 用于指定新增的线程执行的第一个任务,core参数为true表示在新增线程时会判断当前活动线程数是否少于corePoolSize,false表示新增线程前需要判断当前活动线程数是否少于maximumPoolSize,代码如下:

    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            // 获取运行状态
            int rs = runStateOf(c);
    
            /*
             * 这个if判断
             * 如果rs >= SHUTDOWN,则表示此时不再接收新任务;
             * 接着判断以下3个条件,只要有1个不满足,则返回false:
             * 1. rs == SHUTDOWN,这时表示关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务
             * 2. firsTask为空
             * 3. 阻塞队列不为空
             * 
             * 首先考虑rs == SHUTDOWN的情况
             * 这种情况下不会接受新提交的任务,所以在firstTask不为空的时候会返回false;
             * 然后,如果firstTask为空,并且workQueue也为空,则返回false,
             * 因为队列中已经没有任务了,不需要再添加线程了
             */
            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;
    
            for (;;) {
                // 获取线程数
                int wc = workerCountOf(c);
                // 如果wc超过CAPACITY,也就是ctl的低29位的最大值(二进制是29个1),返回false;
                // 这里的core是addWorker方法的第二个参数,如果为true表示根据corePoolSize来比较,
                // 如果为false则根据maximumPoolSize来比较。
                // 
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                // 尝试增加workerCount,如果成功,则跳出第一个for循环
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                // 如果增加workerCount失败,则重新获取ctl的值
                c = ctl.get();  // Re-read ctl
                // 如果当前的运行状态不等于rs,说明状态已被改变,返回第一个for循环继续执行
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }
    
        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            // 根据firstTask来创建Worker对象
            w = new Worker(firstTask);
            // 每一个Worker对象都会创建一个线程
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());
                    // rs < SHUTDOWN表示是RUNNING状态;
                    // 如果rs是RUNNING状态或者rs是SHUTDOWN状态并且firstTask为null,向线程池中添加线程。
                    // 因为在SHUTDOWN时不会在添加新的任务,但还是会执行workQueue中的任务
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        // workers是一个HashSet
                        workers.add(w);
                        int s = workers.size();
                        // largestPoolSize记录着线程池中出现过的最大线程数量
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    // 启动线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
    

    Worker本身实现了Runnable接口,所以一个Worker类型的对象也是一个线程。所以可以通过t.start();来启动线程


    说明

    1.最开始的一次if判断干什么的?
    如果调用addWorker()时,该线程池的状态已经不是RUNNING状态。那么只有一种情况还可能允许增加线程:线程处于SHUTDOWN状态(关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务).因为这时队列中还可能有任务,所以允许增加线程,但不能有firstTask

    2.大for里面的小for干嘛的?
    首先线程在addWork时,线程池的状态可能会改变(所以小for里面如果检测到了状态变化,需要continue到大for重新判断)
    其次小for的循环:只要线程池状态没变化(RUNNING或SHUTDOWN),就一直尝试增加workerCount

    五 Worker类

    线程池中的每一个线程被封装成一个Worker对象,ThreadPool维护的其实就是一组Worker对象,看一下Worker的定义

    private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;
    
        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;
    
        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }
    
        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }
    
        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.
    
        protected boolean isHeldExclusively() {
            return getState() != 0;
        }
    
        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }
    
        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }
    
        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }
    
        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }
    

    Worker继承了AQS,使用AQS来实现独占锁的功能。为什么不使用ReentrantLock来实现呢?可以看到tryAcquire方法,它是不允许重入的,而ReentrantLock是允许重入的:

    略(这里有点看不懂,看完并发再来看这里比较好)

    六 线程池的监控

    通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用

    • getTaskCount:线程池已经执行的和未执行的任务总数;
    • getCompletedTaskCount:线程池已完成的任务数量,该值小于等于taskCount;
    • getLargestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过,也就是达到了maximumPoolSize;
    • getPoolSize:线程池当前的线程数量;
    • getActiveCount:当前线程池中正在执行任务的线程数量。

    对线程池进行监控,在ThreadPoolExecutor类中提供了几个空方法,如beforeExecute方法,afterExecute方法和terminated方法,可以扩展这些方法在执行前或执行后增加一些新的操作,例如统计线程池的执行任务的时间等,可以继承自ThreadPoolExecutor来进行扩展。

    相关文章

      网友评论

          本文标题:线程池

          本文链接:https://www.haomeiwen.com/subject/beahaqtx.html