有趣味的博弈论模型
按语: 本文已经发表在“百科知识”2009 年 6 月下半月总第 413 期第 14-15 页;在今年 2月下半月总第 405 期第 11-13 页上发表了“网络科学三大里程碑”;2005 年 11 月上半月总第 326 期第 21-22 页发表了“网络科学的三大发现”。令我意外的是去年在网上偶然发现“共检索到 10 条读者推荐文章”(请看最后附录),这篇科普文章名列首位,我们还有一篇文章名列第七。如果读者有兴趣可以去看看,或等我有时间找出来。我觉得,把新兴科学应用通俗易懂的语言写出来,有利于科学知识普及。这也应该是一个科学工作者的责任。
在自然界和人类社会经济等领域中广泛存在合作与竞争,而能够反映这种既激烈竞争又需要合作的一门学科就是博弈论(Game Theory),也称对策论,它是模拟和分析理性的个体在利益冲突环境下相互作用的形式、决策及其均衡理论,研究个体之间行为的相互影响和相互作用规律,它可以描述现实生活中参与者面对有限资源的合作与竞争行为。令人惊奇的是,有三次诺贝尔获奖者是博弈论的杰出科学家,他们是 1985 年获得诺贝尔奖的公共选择学派的领导者布坎南,1994 年经济学诺贝尔奖颁发给美国普林斯顿大学的纳什博士、塞尔屯、哈桑尼 3 位博弈论专家,1995 年获奖的理性主义学派的领袖卢卡斯。博弈论在经济学、政治学、管理学、社会学、军事学、生物学等诸多学科领域具有广泛的实际背景和应用价值。
进入 20 世纪末,随着复杂网络科学的一些新的发现,博弈论也成为网络时代人们的一种思维方式、竞争与合作的模式。
博弈论对人有一个最基本假定:人是理性的,人在具体策略选择的目的全是使自己的利益最大化。博弈论就是研究理性的人之间如何进行策略选择的,因此博弈论也称为对策论。
博弈论就凭这么一条最简单的假定可以展开广泛的研究,并获得了丰富多彩的结果,利用博弈论可以解读人类的社会行动或集体行动,更易理解人类社会的复杂性和特殊性。为了刻画个体间利益的冲突对整个系统的影响,人们已经提出和研究了许多博弈模型,比较著名的有三个模型:囚徒困境、“雪堆”博弈和“少数者”博弈,下面笔者通过对这三个模型进行简单而通俗的介绍,让大家了解博弈论及其应用概况。
“囚徒困境”模型
囚徒困境作为一个经典的博弈模型受到广泛关注。这个博弈模型假设两个小偷合伙作案时被捕,分别关在不同的屋子里,如果双方都拒绝承认同伴的罪行,则由于证据不足两人都会被轻判(收益为 );为此,警方设计了一个机制:如果一方出卖同伴,而另一方保持忠诚,则背叛者将无罪释放(收益为T );坚持忠诚的一方将被重判(收益为 );如果双方都背叛了对方,则双方都会被判刑(收益为RSP )。这里假设上述收益参数满足下面的条件:TRPS >>> 。对每个参与者来说,如果对手坚持忠诚,则他也选择忠诚得到的收益 R 小于他选择背叛得到的收益T ;如果对手选择背叛,则他选择忠诚得到的收益 仍小于他选择背叛得到的收益 。 SP可见,无论对手采取哪种策略,自己的最佳策略就是背叛,双方都选择背叛称为囚徒困境的唯一“纳什均衡”(纳什因其提出的“非合作完全信息博弈的纳什均衡”概念而荣获了1994 年的诺贝尔获得经济学奖);同时选择背叛所取得的平均收益要低于两个人同时选择合作取得的平均收益。在这种情况下,理性参与者面临着两难的困境。 自然界中广泛存在的合作现象——从单细胞生物的协同工作到人类的无私奉献的行为说明,还有其他的动力学机制激励一般所认为的自私的个体认识到合作的重要性。为了揭示这种潜在的演化机制,有人提出了“针锋相对”演化规则,采用“去输存赢”策略,改进囚徒困境中的两难结局。
网友评论