美文网首页
R语言 | 带P值的相关性热图绘制教程

R语言 | 带P值的相关性热图绘制教程

作者: 小杜的生信筆記 | 来源:发表于2024-06-23 21:52 被阅读0次

    原文链接:带P值的相关性热图绘制教程

    本期教程

    往期教程部分内容














    **注意:若是在MarkDown格式中无法运行成功,请新建有一个R script文件 **

    一、加载R包

    if (!require(corrplot)) install.packages("corrplot")
    if (!require(Hmisc)) install.packages("ggplot2")
    
    library(ggplot2)
    library(corrplot)
    

    二、加载示例数据

    # 示例数据
    data <- mtcars
    

    三、计算相关性

    1. 计算代码

    cor_matrix <- cor(data, use= 'pairwise.complete.obs',method='spearman')
    
    1. 参数的选择
    • use参数来处理包含缺失值的数据
      "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"

    • everything:默认选项,不处理缺失值。如果数据中有缺失值,将返回 NA。
    • all.obs:只有当所有观察值都存在时才会计算相关性。如果数据中有缺失值,将返回错误。
    • complete.obs:只使用完整的观测对来计算相关性。如果有缺失值,将忽略包含缺失值的观测对。
    • na.or.complete:在有缺失值的情况下会先使用完整的观测对,如果全部是缺失值,则返回 NA。
    • pairwise.complete.obs:每对变量单独处理缺失值,计算每一对变量的相关性时,只使用这两个变量都有数据的观测值。

    • method参数:计算相关性的方法。
      pearson(default),kendall,spearman
    cor_matrix
    
      mpg        cyl       disp         hp        drat         wt        qsec         vs
    mpg   1.0000000 -0.9108013 -0.9088824 -0.8946646  0.65145546 -0.8864220  0.46693575  0.7065968
    cyl  -0.9108013  1.0000000  0.9276516  0.9017909 -0.67888119  0.8577282 -0.57235095 -0.8137890
    disp -0.9088824  0.9276516  1.0000000  0.8510426 -0.68359210  0.8977064 -0.45978176 -0.7236643
    hp   -0.8946646  0.9017909  0.8510426  1.0000000 -0.52012499  0.7746767 -0.66660602 -0.7515934
    drat  0.6514555 -0.6788812 -0.6835921 -0.5201250  1.00000000 -0.7503904  0.09186863  0.4474575
    wt   -0.8864220  0.8577282  0.8977064  0.7746767 -0.75039041  1.0000000 -0.22540120 -0.5870162
    qsec  0.4669358 -0.5723509 -0.4597818 -0.6666060  0.09186863 -0.2254012  1.00000000  0.7915715
    vs    0.7065968 -0.8137890 -0.7236643 -0.7515934  0.44745745 -0.5870162  0.79157148  1.0000000
    am    0.5620057 -0.5220712 -0.6240677 -0.3623276  0.68657079 -0.7377126 -0.20333211  0.1683451
    gear  0.5427816 -0.5643105 -0.5944703 -0.3314016  0.74481617 -0.6761284 -0.14819967  0.2826617
    carb -0.6574976  0.5800680  0.5397781  0.7333794 -0.12522294  0.4998120 -0.65871814 -0.6336948
                  am       gear        carb
    mpg   0.56200569  0.5427816 -0.65749764
    cyl  -0.52207118 -0.5643105  0.58006798
    disp -0.62406767 -0.5944703  0.53977806
    hp   -0.36232756 -0.3314016  0.73337937
    drat  0.68657079  0.7448162 -0.12522294
    wt   -0.73771259 -0.6761284  0.49981205
    qsec -0.20333211 -0.1481997 -0.65871814
    vs    0.16834512  0.2826617 -0.63369482
    am    1.00000000  0.8076880 -0.06436525
    gear  0.80768800  1.0000000  0.11488698
    carb -0.06436525  0.1148870  1.00000000
    

    2. 计算P值

    使用cor.mtest()函数计算

    # 计算P值矩阵
    p_values <- cor.ptest(data, conf.level = 0.95, method = "spearman")
    #
    p_values
    
    mpg          cyl         disp           hp         drat           wt         qsec
    mpg  0.000000e+00 4.690287e-13 6.370336e-13 5.085969e-12 5.381347e-05 1.487595e-11 7.055765e-03
    cyl  4.690287e-13 0.000000e+00 2.275443e-14 1.867686e-12 1.943342e-05 3.574157e-10 6.195832e-04
    disp 6.370336e-13 2.275443e-14 0.000000e+00 6.791338e-10 1.613884e-05 3.346362e-12 8.108019e-03
    hp   5.085969e-12 1.867686e-12 6.791338e-10 0.000000e+00 2.277988e-03 1.953795e-07 3.105344e-05
    drat 5.381347e-05 1.943342e-05 1.613884e-05 2.277988e-03 0.000000e+00 7.593194e-07 6.170251e-01
    wt   1.487595e-11 3.574157e-10 3.346362e-12 1.953795e-07 7.593194e-07 0.000000e+00 2.148388e-01
    qsec 7.055765e-03 6.195832e-04 8.108019e-03 3.105344e-05 6.170251e-01 2.148388e-01 0.000000e+00
    vs   6.191450e-06 1.484058e-08 2.863870e-06 7.125286e-07 1.023343e-02 4.129434e-04 6.860828e-08
    am   8.156989e-04 2.178046e-03 1.352011e-04 4.155768e-02 1.432515e-05 1.453656e-06 2.643506e-01
    gear 1.328681e-03 7.678209e-04 3.334775e-04 6.390322e-02 1.014930e-06 2.162837e-05 4.182425e-01
    carb 4.337570e-05 5.016643e-04 1.430209e-03 1.799847e-06 4.946824e-01 3.583063e-03 4.150300e-05
                   vs           am         gear         carb
    mpg  6.191450e-06 8.156989e-04 1.328681e-03 4.337570e-05
    cyl  1.484058e-08 2.178046e-03 7.678209e-04 5.016643e-04
    disp 2.863870e-06 1.352011e-04 3.334775e-04 1.430209e-03
    hp   7.125286e-07 4.155768e-02 6.390322e-02 1.799847e-06
    drat 1.023343e-02 1.432515e-05 1.014930e-06 4.946824e-01
    wt   4.129434e-04 1.453656e-06 2.162837e-05 3.583063e-03
    qsec 6.860828e-08 2.643506e-01 4.182425e-01 4.150300e-05
    vs   0.000000e+00 3.570439e-01 1.169934e-01 9.878823e-05
    am   3.570439e-01 0.000000e+00 2.304063e-08 7.263524e-01
    gear 1.169934e-01 2.304063e-08 0.000000e+00 5.312358e-01
    carb 9.878823e-05 7.263524e-01 5.312358e-01 0.000000e+00
    

    绘制相关性热图

    原文链接:带P值的相关性热图绘制教程

    若我们的教程对你有所帮助,请点赞+收藏+转发,这是对我们最大的支持。

    往期部分文章

    1. 最全WGCNA教程(替换数据即可出全部结果与图形)


    2. 精美图形绘制教程

    3. 转录组分析教程

    4. 转录组下游分析

    小杜的生信筆記 ,主要发表或收录生物信息学教程,以及基于R分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

    相关文章

      网友评论

          本文标题:R语言 | 带P值的相关性热图绘制教程

          本文链接:https://www.haomeiwen.com/subject/bfsrcjtx.html