美文网首页
基于torchtext的文本分类

基于torchtext的文本分类

作者: 都灵的夏天_ | 来源:发表于2021-05-19 15:29 被阅读0次
    %matplotlib inline
    

    基于torchtext的文本分类

    在这个项目,我们展示怎样去使用torchtext库建立数据集用于文本分类统计,用户可以去灵活调用,

    • 通过iterator访问原始数据

    • 建立数据处理的pipeline,将原始文本字符串转换为torch.tensor,用于模型训练.

    • Shuffle and iterate the data with torch.utils.data.DataLoader <https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader>__

    访问原始数据集iterator

    • torchtext库提供了几个原始数据集iterator,他们提供原始文本,例如AG_NEWS 数据集itrators 提供原始数据以元组的形式(label,text)

    import torch
    from torchtext.datasets import AG_NEWS
    # train_iter = AG_NEWS(split='train')
    
    # 如果不给root参数,会自动从网站下载。
    train_iter = AG_NEWS(root='./data/ag_news_csv/', split='train')
    
    train_iter
    
    <torchtext.data.datasets_utils._RawTextIterableDataset at 0x7f125d5ba100>
    

    ::

    next(train_iter)
    >>> (3, "Wall St. Bears Claw Back Into the Black (Reuters) Reuters - 
    Short-sellers, Wall Street's dwindling\\band of ultra-cynics, are seeing green 
    again.")
    
    next(train_iter)
    >>> (3, 'Carlyle Looks Toward Commercial Aerospace (Reuters) Reuters - Private 
    investment firm Carlyle Group,\\which has a reputation for making well-timed 
    and occasionally\\controversial plays in the defense industry, has quietly 
    placed\\its bets on another part of the market.')
    
    next(train_iter)
    >>> (3, "Oil and Economy Cloud Stocks' Outlook (Reuters) Reuters - Soaring 
    crude prices plus worries\\about the economy and the outlook for earnings are 
    expected to\\hang over the stock market next week during the depth of 
    the\\summer doldrums.")
    

    准备数据处理pipelines

    • 我们已经重新定义了Torchtext库的非常基本的组件,包括vocab,词向量,tokrnizer。 这些是原始文本字符串的基本数据处理构建块。

    • 这是使用tokenizer和vocab进行典型NLP数据处理的示例。 第一步是使用原始训练数据集构建词汇表。 通过在Vocab类的构造函数中设置参数,用户可以拥有自定义的vocab。 例如,要包含toknes的最小频率``min_freq''。

    from torchtext.data.utils import get_tokenizer
    from collections import Counter
    from torchtext.vocab import Vocab
    """
    get_tokenizer函数的作用是创建一个分词器,将语料喂给相应的分词器,可以根据不同分词函数的规则完成分词,
    分词器支持’basic_english’,‘spacy’,‘moses’,‘toktok’,‘revtok’,'subword’等规则
    """
    
    tokenizer = get_tokenizer('basic_english')
    # train_iter = AG_NEWS(split='train')
    train_iter = AG_NEWS(root='./data/ag_news_csv/', split='train')
    
    #实例化一个计数器
    counter = Counter()
    for (label, line) in train_iter:
        #update后的参数可以是:可迭代对象或者映射操作原理:如果要更新的关键字已存在,则对它的值进行求和;如果不存在,则添加
        counter.update(tokenizer(line))
    vocab = Vocab(counter, min_freq=1)
    
    [vocab[token] for token in ['here', 'is', 'an', 'example']]
    
    [476, 22, 31, 5298]
    

    vacab块将token列表转换为整数
    ::

    [vocab[token] for token in ['here', 'is', 'an', 'example']]
    >>> [476, 22, 31, 5298]
    

    使用分词器(tokenizer)和词汇表(vocablary)准备文本处理管道(pipeline)。 文本和标签管道将用于处理来自数据集迭代器(iterator)的原始数据字符串。

    text_pipeline = lambda x: [vocab[token] for token in tokenizer(x)]
    label_pipeline = lambda x: int(x) - 1
    

    The text pipeline converts a text string into a list of integers based on the lookup table defined in the vocabulary. The label pipeline converts the label into integers. For example,
    text_pipeline根据vocab中定义的查找表将文本字符串转换为整数列表。 label_pipeline将标签转换为整数。 例如
    ::

    text_pipeline('here is the an example')
    >>> [475, 21, 2, 30, 5286]
    label_pipeline('10')
    >>> 9
    

    生成数据批处理和迭代器

    torch.utils.data.DataLoader <https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader>__
    被推荐给pytorch用户(使用说明 here <https://pytorch.org/tutorials/beginner/data_loading_tutorial.html>__).

    • 它与实现getitem()和len()协议的map-style数据集一起使用,并表示成map从索引/键到数据样本。 它也适用于shutffle argument False的可迭代数据集

    • 在发送到模型之前,colate_fn函数对从DataLoader生成的批样本起作用。 colate_fn的输入是一批数据,其批大小在DataLoader中,而colate_fn根据先前声明的数据处理管道对其进行处理。 请注意此处,并确保将“ collate_fn”声明为顶级def。 这样可以确保该功能在每个工作程序中均可用。

    • 在此示例中,原始数据批处理输入中的文本条目被打包到一个列表中,并作为单个张量连接到nn.EmbeddingBag输入中。 offset是定界符的张量,表示文本张量中各个序列的起始索引。 Label是一个张量,用于保存单个文本条目的标签。

    from torch.utils.data import DataLoader
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    def collate_batch(batch):
        label_list, text_list, offsets = [], [], [0]
        for (_label, _text) in batch:
             label_list.append(label_pipeline(_label))
             processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
             text_list.append(processed_text)
             offsets.append(processed_text.size(0))
        label_list = torch.tensor(label_list, dtype=torch.int64)
        #cusum 返回维度dim中输入元素的累计和
        offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
        #orch.cat是将两个张量(tensor)拼接在一起,cat是concatnate的意思,即拼接,联系在一起。
        text_list = torch.cat(text_list)
        return label_list.to(device), text_list.to(device), offsets.to(device)    
    
    # train_iter = AG_NEWS(split='train')
    train_iter = AG_NEWS(root='./data/ag_news_csv/', split='train')
    dataloader = DataLoader(train_iter, batch_size=8, shuffle=False, collate_fn=collate_batch)
    

    定义模型

    该模型由nn.EmbeddingBag <https://pytorch.org/docs/stable/nn.html?highlight=embeddingbag#torch.nn.EmbeddingBag>__层以及用于分类目的的线性层组成。nn.EmbeddingBag,默认模式为“ mean”,计算嵌入的“袋”的平均值。 尽管此处的文本条目具有不同的长度,但是nn.EmbeddingBag模块此处不需要填充,因为文本长度以偏移量保存。

    此外,由于nn.EmbeddingBag累积在fly的嵌入平均跨度
    嵌入中的

    nn.EmbeddingBag可以提升表现和内存效率来处理一系列张量。

    image
    from torch import nn
    
    class TextClassificationModel(nn.Module):
    
        def __init__(self, vocab_size, embed_dim, num_class):
            # vocab_size: 代表整个语料包含的单词总数
            # embed_dim: 代表词嵌入的维度
            # num_class: 代表是文本分类的类别数
            super(TextClassificationModel, self).__init__()
            
            # 实例化EMbeddingBag层的对象, 传入3个参数, 分别代表单词总数, 词嵌入的维度, 进行梯度求解时只更新部分权重
            self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
            # 实例化全连接线性层的对象, 两个参数分别代表输入的维度和输出的维度
            self.fc = nn.Linear(embed_dim, num_class)
            # 对定义的所有层权重进行初始化
            self.init_weights()
    
        def init_weights(self):
            # 首先给定初始化权重的值域范围
            initrange = 0.5
            # 各层的权重使用均匀分布进行初始化
            self.embedding.weight.data.uniform_(-initrange, initrange)
            self.fc.weight.data.uniform_(-initrange, initrange)
            self.fc.bias.data.zero_()
    
        def forward(self, text, offsets):
            # text: 代表文本进过数字化映射后的张量
            embedded = self.embedding(text, offsets)
            return self.fc(embedded)
    

    启动实例

    AG_NEWS数据集有4个标签,因此num_class = 4
    ::

    1 : World
    2 : Sports
    3 : Business
    4 : Sci/Tec

    我们建立一个嵌入维度为64的模型。vcab_size的大小等于词汇实例的长度。 num_class等于标签的数量,

    # train_iter = AG_NEWS(split='train')
    train_iter = AG_NEWS(root='./data/ag_news_csv/', split='train')
    num_class = len(set([label for (label, text) in train_iter]))
    vocab_size = len(vocab)
    emsize = 64
    model = TextClassificationModel(vocab_size, emsize, num_class).to(device)
    

    Define functions to train the model and evaluate results.

    import time
    
    def train(dataloader):
        model.train()
        # 初始化训练损失值和准确率
        total_acc, total_count = 0, 0
        log_interval = 500
        start_time = time.time()
    
        for idx, (label, text, offsets) in enumerate(dataloader):
            # 训练模型的第一步: 将优化器的梯度清零
            optimizer.zero_grad()
            # 将一个批次的数据输入模型中, 进行预测
            predited_label = model(text, offsets)
            # 用损失函数来计算预测值和真实标签之间的损失
            loss = criterion(predited_label, label)
            # 进行反向传播的计算
            loss.backward()
            
            torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
            # 参数更新
            optimizer.step()
            # 计算该批次的准确率并加到总准确率上, 注意一点这里加的是准确的数字
            total_acc += (predited_label.argmax(1) == label).sum().item()
            total_count += label.size(0)
            # 500轮打印一次
            if idx % log_interval == 0 and idx > 0:
                elapsed = time.time() - start_time
                print('| epoch {:3d} | {:5d}/{:5d} batches '
                      '| accuracy {:8.3f}'.format(epoch, idx, len(dataloader),
                                                  total_acc/total_count))
                total_acc, total_count = 0, 0
                start_time = time.time()
    
    def evaluate(dataloader):
        '''
        在model(test_datasets)之前,需要加上model.eval(). 
        否则的话,有输入数据,即使不训练,它也会改变权值。
        这是model中含有batch normalization层所带来的的性质。
        '''
        model.eval()
        total_acc, total_count = 0, 0
        # 注意: 在验证阶段, 一定要保证模型的参数不发生改变, 也就是不求梯度
        with torch.no_grad():
            for idx, (label, text, offsets) in enumerate(dataloader):
                # 将验证数据输入模型进行预测
                predited_label = model(text, offsets)
                #计算损失值
                loss = criterion(predited_label, label)
                # 将该批次的损失值累加到总损失值中
                total_acc += (predited_label.argmax(1) == label).sum().item()
                total_count += label.size(0)
        return total_acc/total_count
    

    分割数据集并运行模型

    由于原始的AG_NEWS没有验证数据集,因此我们拆分了训练
    将数据集划分为训练/验证集,其分割比率为0.95(train),0.05(valid)。
    我们使用torch.utils.data.dataset.random_split <https://pytorch.org/docs/stable/data.html?highlight=random_split#torch.utils.data.random_split>__
    Pytorch核心库中的函数

    CrossEntropyLoss <https://pytorch.org/docs/stable/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss>__
    criterionnn.LogSoftmax()nn.NLLLoss()合并到一个类中。
    在训练带有C类的分类问题时很有用。

    SGD <https://pytorch.org/docs/stable/_modules/torch/optim/sgd.html>__
    implements stochastic gradient descent method as the optimizer.
    实现随机梯度下降法作为优化程序。 最初的
    学习率设置为5.0。
    StepLR <https://pytorch.org/docs/master/_modules/torch/optim/lr_scheduler.html#StepLR>__
    在这里,StepLR用于通过epochs调整学习率。

    from torch.utils.data.dataset import random_split
    # Hyperparameters
    EPOCHS = 10 # epoch  指定训练的轮次
    LR = 5  # learning rate 
    BATCH_SIZE = 64 # batch size for training
    
    # 定义损失函数, 定义交叉熵损失函数
    criterion = torch.nn.CrossEntropyLoss()
    # 定义优化器, 定义随机梯度下降优化器
    optimizer = torch.optim.SGD(model.parameters(), lr=LR)
    # 定义优化器步长的一个优化器, 专门用于学习率的衰减
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
    total_accu = None
    # train_iter, test_iter = AG_NEWS()
    train_iter, test_iter = AG_NEWS(root='./data/ag_news_csv/')
    
    train_dataset = list(train_iter)
    test_dataset = list(test_iter)
    
    # 选择全部训练数据的95%作为训练集数据, 剩下的5%作为验证数据
    num_train = int(len(train_dataset) * 0.95)
    # 子集1,子集2=random_split(数据集,[长度1,长度2])
    split_train_, split_valid_ = \
        random_split(train_dataset, [num_train, len(train_dataset) - num_train])
    
    train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                                  shuffle=True, collate_fn=collate_batch)
    valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                                  shuffle=True, collate_fn=collate_batch)
    test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE,
                                 shuffle=True, collate_fn=collate_batch)
    #训练10轮
    for epoch in range(1, EPOCHS + 1):
        epoch_start_time = time.time()
        train(train_dataloader)
        accu_val = evaluate(valid_dataloader)
        # 如果total_accu!=0 且大于当前返回的准确率 调整学习率
        if total_accu is not None and total_accu > accu_val:
            # 进行整个轮次的优化器学习率的调整
          scheduler.step()
        else:
           total_accu = accu_val
        print('-' * 59)
        print('| end of epoch {:3d} | time: {:5.2f}s | '
              'valid accuracy {:8.3f} '.format(epoch,
                                               time.time() - epoch_start_time,
                                               accu_val))
        print('-' * 59)
    
    | epoch   1 |   500/ 1782 batches | accuracy    0.683
    | epoch   1 |  1000/ 1782 batches | accuracy    0.852
    | epoch   1 |  1500/ 1782 batches | accuracy    0.879
    -----------------------------------------------------------
    | end of epoch   1 | time: 10.02s | valid accuracy    0.886 
    -----------------------------------------------------------
    | epoch   2 |   500/ 1782 batches | accuracy    0.895
    | epoch   2 |  1000/ 1782 batches | accuracy    0.901
    | epoch   2 |  1500/ 1782 batches | accuracy    0.904
    -----------------------------------------------------------
    | end of epoch   2 | time:  9.54s | valid accuracy    0.898 
    -----------------------------------------------------------
    | epoch   3 |   500/ 1782 batches | accuracy    0.914
    | epoch   3 |  1000/ 1782 batches | accuracy    0.915
    | epoch   3 |  1500/ 1782 batches | accuracy    0.914
    -----------------------------------------------------------
    | end of epoch   3 | time:  8.67s | valid accuracy    0.904 
    -----------------------------------------------------------
    | epoch   4 |   500/ 1782 batches | accuracy    0.923
    | epoch   4 |  1000/ 1782 batches | accuracy    0.924
    | epoch   4 |  1500/ 1782 batches | accuracy    0.924
    -----------------------------------------------------------
    | end of epoch   4 | time:  8.88s | valid accuracy    0.910 
    -----------------------------------------------------------
    | epoch   5 |   500/ 1782 batches | accuracy    0.931
    | epoch   5 |  1000/ 1782 batches | accuracy    0.930
    | epoch   5 |  1500/ 1782 batches | accuracy    0.929
    -----------------------------------------------------------
    | end of epoch   5 | time:  8.39s | valid accuracy    0.901 
    -----------------------------------------------------------
    | epoch   6 |   500/ 1782 batches | accuracy    0.940
    | epoch   6 |  1000/ 1782 batches | accuracy    0.941
    | epoch   6 |  1500/ 1782 batches | accuracy    0.944
    -----------------------------------------------------------
    | end of epoch   6 | time:  8.31s | valid accuracy    0.913 
    -----------------------------------------------------------
    | epoch   7 |   500/ 1782 batches | accuracy    0.943
    | epoch   7 |  1000/ 1782 batches | accuracy    0.944
    | epoch   7 |  1500/ 1782 batches | accuracy    0.941
    -----------------------------------------------------------
    | end of epoch   7 | time:  8.75s | valid accuracy    0.915 
    -----------------------------------------------------------
    | epoch   8 |   500/ 1782 batches | accuracy    0.944
    | epoch   8 |  1000/ 1782 batches | accuracy    0.944
    | epoch   8 |  1500/ 1782 batches | accuracy    0.944
    -----------------------------------------------------------
    | end of epoch   8 | time:  8.85s | valid accuracy    0.914 
    -----------------------------------------------------------
    | epoch   9 |   500/ 1782 batches | accuracy    0.946
    | epoch   9 |  1000/ 1782 batches | accuracy    0.945
    | epoch   9 |  1500/ 1782 batches | accuracy    0.947
    -----------------------------------------------------------
    | end of epoch   9 | time:  8.88s | valid accuracy    0.914 
    -----------------------------------------------------------
    | epoch  10 |   500/ 1782 batches | accuracy    0.946
    | epoch  10 |  1000/ 1782 batches | accuracy    0.948
    | epoch  10 |  1500/ 1782 batches | accuracy    0.946
    -----------------------------------------------------------
    | end of epoch  10 | time:  9.13s | valid accuracy    0.915 
    -----------------------------------------------------------
    

    Running the model on GPU with the following printout:

    ::

       | epoch   1 |   500/ 1782 batches | accuracy    0.684
       | epoch   1 |  1000/ 1782 batches | accuracy    0.852
       | epoch   1 |  1500/ 1782 batches | accuracy    0.877
       -----------------------------------------------------------
       | end of epoch   1 | time:  8.33s | valid accuracy    0.867
       -----------------------------------------------------------
       | epoch   2 |   500/ 1782 batches | accuracy    0.895
       | epoch   2 |  1000/ 1782 batches | accuracy    0.900
       | epoch   2 |  1500/ 1782 batches | accuracy    0.903
       -----------------------------------------------------------
       | end of epoch   2 | time:  8.18s | valid accuracy    0.890
       -----------------------------------------------------------
       | epoch   3 |   500/ 1782 batches | accuracy    0.914
       | epoch   3 |  1000/ 1782 batches | accuracy    0.914
       | epoch   3 |  1500/ 1782 batches | accuracy    0.916
       -----------------------------------------------------------
       | end of epoch   3 | time:  8.20s | valid accuracy    0.897
       -----------------------------------------------------------
       | epoch   4 |   500/ 1782 batches | accuracy    0.926
       | epoch   4 |  1000/ 1782 batches | accuracy    0.924
       | epoch   4 |  1500/ 1782 batches | accuracy    0.921
       -----------------------------------------------------------
       | end of epoch   4 | time:  8.18s | valid accuracy    0.895
       -----------------------------------------------------------
       | epoch   5 |   500/ 1782 batches | accuracy    0.938
       | epoch   5 |  1000/ 1782 batches | accuracy    0.935
       | epoch   5 |  1500/ 1782 batches | accuracy    0.937
       -----------------------------------------------------------
       | end of epoch   5 | time:  8.16s | valid accuracy    0.902
       -----------------------------------------------------------
       | epoch   6 |   500/ 1782 batches | accuracy    0.939
       | epoch   6 |  1000/ 1782 batches | accuracy    0.939
       | epoch   6 |  1500/ 1782 batches | accuracy    0.938
       -----------------------------------------------------------
       | end of epoch   6 | time:  8.16s | valid accuracy    0.906
       -----------------------------------------------------------
       | epoch   7 |   500/ 1782 batches | accuracy    0.941
       | epoch   7 |  1000/ 1782 batches | accuracy    0.939
       | epoch   7 |  1500/ 1782 batches | accuracy    0.939
       -----------------------------------------------------------
       | end of epoch   7 | time:  8.19s | valid accuracy    0.903
       -----------------------------------------------------------
       | epoch   8 |   500/ 1782 batches | accuracy    0.942
       | epoch   8 |  1000/ 1782 batches | accuracy    0.941
       | epoch   8 |  1500/ 1782 batches | accuracy    0.942
       -----------------------------------------------------------
       | end of epoch   8 | time:  8.16s | valid accuracy    0.904
       -----------------------------------------------------------
       | epoch   9 |   500/ 1782 batches | accuracy    0.942
       | epoch   9 |  1000/ 1782 batches | accuracy    0.941
       | epoch   9 |  1500/ 1782 batches | accuracy    0.942
       -----------------------------------------------------------
         end of epoch   9 | time:  8.16s | valid accuracy    0.904
       -----------------------------------------------------------
       | epoch  10 |   500/ 1782 batches | accuracy    0.940
       | epoch  10 |  1000/ 1782 batches | accuracy    0.942
       | epoch  10 |  1500/ 1782 batches | accuracy    0.942
       -----------------------------------------------------------
       | end of epoch  10 | time:  8.15s | valid accuracy    0.904
       -----------------------------------------------------------
    

    Evaluate the model with test dataset

    Checking the results of the test dataset…

    print('Checking the results of test dataset.')
    accu_test = evaluate(test_dataloader)
    print('test accuracy {:8.3f}'.format(accu_test))
    
    Checking the results of test dataset.
    test accuracy    0.908
    

    ::

       test accuracy    0.906
    

    Test on a random news

    Use the best model so far and test a golf news.

    ag_news_label = {1: "World",
                     2: "Sports",
                     3: "Business",
                     4: "Sci/Tec"}
    
    def predict(text, text_pipeline):
        with torch.no_grad():
            text = torch.tensor(text_pipeline(text))
            output = model(text, torch.tensor([0]))
            return output.argmax(1).item() + 1
    
    ex_text_str = "MEMPHIS, Tenn. – Four days ago, Jon Rahm was \
        enduring the season’s worst weather conditions on Sunday at The \
        Open on his way to a closing 75 at Royal Portrush, which \
        considering the wind and the rain was a respectable showing. \
        Thursday’s first round at the WGC-FedEx St. Jude Invitational \
        was another story. With temperatures in the mid-80s and hardly any \
        wind, the Spaniard was 13 strokes better in a flawless round. \
        Thanks to his best putting performance on the PGA Tour, Rahm \
        finished with an 8-under 62 for a three-stroke lead, which \
        was even more impressive considering he’d never played the \
        front nine at TPC Southwind."
    
    model = model.to("cpu")
    
    print("This is a %s news" %ag_news_label[predict(ex_text_str, text_pipeline)])
    
    This is a Sports news
    

    ::

       This is a Sports news
    

    模型保存于加载

    MODEL_PATH = './news_model.pth'
    torch.save(model.state_dict(), MODEL_PATH)
    # print('The model saved epoch {}'.format(epoch))
    
    # 如果未来要重新加载模型,在实例化model后直接执行下面命令即可
    model.load_state_dict(torch.load(MODEL_PATH))
    
    The model saved epoch 10
    
    
    
    
    
    <All keys matched successfully>
    
    
    

    相关文章

      网友评论

          本文标题:基于torchtext的文本分类

          本文链接:https://www.haomeiwen.com/subject/bfumhltx.html