美文网首页
图像处理常见方法

图像处理常见方法

作者: 邯山之郸 | 来源:发表于2020-12-01 07:54 被阅读0次

1、颜色转换

以红色图像为例。在图像中提取红色部分颜色。

import cv2
import numpy as np
import os

os.chdir(r'C:\Users\Eddie\Desktop')

img = cv2.imread('test111.jpg')
#各种滤波
blur = cv2.blur(img,(5,5))
blur0 = cv2.medianBlur(blur,5)
blur1 = cv2.GaussianBlur(blur0,(5,5),0)
blur2 = cv2.bilateralFilter(blur1,9,75,75)
# 颜色转换,RGB->HSV
hsv = cv2.cvtColor(blur2,cv2.COLOR_BGR2HSV)
# 在HSV空间的颜色范围,参考下表中的颜色区间
lower_red = np.array([156,20,70])
upper_red = np.array([180,255,255])
mask = cv2.inRange(hsv,lower_red,upper_red)

# 与原图与操作,只剩下希望留下的颜色
res = cv2.bitwise_and(img,img,mask = mask)


cv2.imshow('blur',res)
cv2.waitKey(0)
cv2.destroyAllWindows()
image.png
image.png

2. 二值化处理

1) 二值化处理

# 手动二值化处理
# 设置阈值大小 threshold
thresh = 125
# 设置超过阈值像素值的最大值
maxval = 255
# THRESH_BINARY:超过阈值为maxval,否则为0
# THRESH_BINARY_INV:超过阈值为0,否则为maxval(相当于上个参数取反)
# THRESH_TRUNC:超过阈值为thresh,低于阈值灰度值不变
# THRESH_TOZERO:超过阈值灰度值不变,否则为0
# THRESH_TOZERO_INV:超过阈值为0,低于阈值灰度值不变
ret, thresh1 = cv2.threshold(img, thresh, maxval, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img, thresh, maxval, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img, thresh, maxval, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img, thresh, maxval, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img, thresh, maxval, cv2.THRESH_TOZERO_INV)

titles = ['original image', 'Binary', 'binary-inv', 'trunc', 'tozero', 'tozero-inv']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
    plt.subplot(2, 3, i+1)
    plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([])
    plt.yticks([])

plt.show()

2) 自动二值化处理

img2 = cv2.imread('002.tif', 0)
# rows, cols = img2.shape
# Otsu阈值
ret1, thresh1 = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)
# Otsu可与其他二值化方式一起使用
ret2, thresh2 = cv2.threshold(blur, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)
# # Triangle阈值-很少用到
# ret3, thresh3 = cv2.threshold(img2, 0, 255, cv2.THRESH_TRIANGLE)
# ret4, thresh4 = cv2.threshold(blur, 0, 255, cv2.THRESH_TRIANGLE)

titles = ['original image', "Otsu's", "Otsu's+Binary"] # "Triangle", "Triangle-Otsu's"
images = [img, thresh1, thresh2] # thresh3, thresh4

for i in range(3):
    plt.subplot(1, 3, i+1)
    plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([])
    plt.yticks([])

plt.show()

3) 自适应二值化

# maxval为像素值的最大值默认设为255
# blockSize为计算像素阈值的像素邻域的大小:3、5、7。。。。、99
# C为从平均值或加权平均值中减去常数,一般设置为0-50
blockSize = 25
C = 5
# 高斯BINARY
thresh1 = cv2.adaptiveThreshold(img2, maxval, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, blockSize, C)
# 高斯BINARY_INV
thresh2 = cv2.adaptiveThreshold(img2, maxval, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, blockSize, C)
# 平均BINARY
thresh3 = cv2.adaptiveThreshold(img2, maxval, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, blockSize, C)
# 平均BINARY_INV
thresh4 = cv2.adaptiveThreshold(img2, maxval, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, blockSize, C)

titles = ['original image', "gaussian binary", "gaussian binary_inv", "mean binary", "mean binary_inv"]
images = [img2, thresh1, thresh2, thresh3, thresh4]

for i in range(5):
    plt.subplot(2, 3, i+1)
    plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([])
    plt.yticks([])

plt.show()

3. 掩码处理

如果摄像头固定,而监控目标位置也相对固定,则可以利用掩码预处理图像,使得计算机只处理某个区域的图像。

mask = np.zeros(np.shape(img),dtype=np.uint8)
mask[200:770,190:260]=255 # 原点在左上角,x向下,y向右
img= cv2.add(img,np.zeros(np.shape(img),dtype=np.uint8),mask=mask)
cv2.imshow('mask',img)
cv2.waitKey(0)

4. 直线检测之霍夫变换

前提:边缘检测完成。

cv2.HoughLines()
    dst:   输出图像. 它应该是个灰度图 (但事实上是个二值化图)
    lines: 储存着检测到的直线的参数对 (r,\theta) 的容器 
    rho : 参数极径 r 以像素值为单位的分辨率. 我们使用 1 像素.
    theta: 参数极角 \theta 以弧度为单位的分辨率. 我们使用 1度 (即CV_PI/180)
    threshold:    设置阈值: 一条直线所需最少的的曲线交点
    srn and stn:  参数默认为0

cv2.HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 )
    dst:    输出图像. 它应该是个灰度图 (但事实上是个二值化图) 
    lines:  储存着检测到的直线的参数对 (x_{start}, y_{start}, x_{end}, y_{end}) 的容器
    rho :   参数极径 r 以像素值为单位的分辨率. 我们使用 1 像素.
    theta:  参数极角 \theta 以弧度为单位的分辨率. 我们使用 1度 (即CV_PI/180)
    threshold:    设置阈值: 一条直线所需最少的的曲线交点。超过设定阈值才被检测出线段,值越大,基本上意味着检出的线段越长,检出的线段个数越少。
    minLinLength: 能组成一条直线的最少点的数量. 点数量不足的直线将被抛弃.
    maxLineGap:   能被认为在一条直线上的两点的最大距离。

5. 边缘检测

Canny

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 

必要参数:

  • 第一个参数是需要处理的原图像,该图像必须为单通道的灰度图;
  • 第二个参数是阈值1;
  • 第三个参数是阈值2。
    Canny检测只能针对灰度图,使用代码如下:
import cv2
import numpy as np  
 
img = cv2.imread("D:/image_gray.jpg", 0)
 
img = cv2.GaussianBlur(img,(3,3),0)
canny = cv2.Canny(img, 50, 150)
 
cv2.imshow('Canny', canny)
cv2.waitKey(0)
cv2.destroyAllWindows()

在github上有一个可以在运行时调整阈值大小的程序。其代码如下:

import cv2
import numpy as np
 
def CannyThreshold(lowThreshold):
    detected_edges = cv2.GaussianBlur(gray,(3,3),0)
    detected_edges = cv2.Canny(detected_edges,lowThreshold,lowThreshold*ratio,apertureSize = kernel_size)
    dst = cv2.bitwise_and(img,img,mask = detected_edges)  # just add some colours to edges from original image.
    cv2.imshow('canny demo',dst)
 
lowThreshold = 0
max_lowThreshold = 100
ratio = 3
kernel_size = 3
 
img = cv2.imread('D:/lion.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
cv2.namedWindow('canny demo')
 
cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold)
 
CannyThreshold(0)  # initialization
if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()

6. 直线检测(FLD)

Fast Line Detector: opencv-contrib-python模块才行,不是opencv-python模块。

def FLD(image):
    # Create default Fast Line Detector class
    fld = cv2.ximgproc.createFastLineDetector()
    # Get line vectors from the image
    lines = fld.detect(image)
    # Draw lines on the image
    line_on_image = fld.drawSegments(image, lines)
    # Plot
    plt.imshow(line_on_image, interpolation='nearest', aspect='auto')
    plt.show()
    return line_on_image

其中 lines = fld.detect(image)返回的是各个线段的顶点坐标。四个一组。很多直线被分成了很多线段,需要重新整合一下才好。

cv2.ximgproc.createFastLineDetector()可以带参数,参与意义如下:

retval = cv.ximgproc.createFastLineDetector( [, _length_threshold[, _distance_threshold[, _canny_th1[, _canny_th2[, _canny_aperture_size[, _do_merge]]]]]] ) 
 
Parameters 
_length_threshold 10 - Segment shorter than this will be discarded 
 
_distance_threshold 1.41421356 - A point placed from a hypothesis line segment farther than this will be regarded as an outlier 
 
_canny_th1 50 - First threshold for hysteresis procedure in Canny() 
 
_canny_th2 50 - Second threshold for hysteresis procedure in Canny() 
 
_canny_aperture_size 3 - Aperturesize for the sobel operator in Canny() 
 
_do_merge false - If true, incremental merging of segments will be perfomred

功能:找出检测结果中最长的一根直线,绘制该直线及其两个端点,并且在该直线一个端点处绘制箭头。

import cv2
import numpy as np
from scipy.spatial import distance as dist
 
img = cv2.imread('sDQLM.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
#Create default Fast Line Detector (FSD)
fld = cv2.ximgproc.createFastLineDetector()
 
#Detect lines in the image
lines = fld.detect(gray)
 
dMax = 0
bx_Max = 0
by_Max = 0
ex_Max = 0
ey_Max = 0
 
for L in lines:
 
    bx,by,ex,ey = L[0]
    
    # compute the Euclidean distance between the two points,
    D = dist.euclidean((bx, by), (ex, ey))
    
    if D > dMax:
        dMax = D
        bx_Max = bx
        by_Max = by
        ex_Max = ex
        ey_Max = ey
        
lineMax = np.array([[[bx_Max, by_Max, ex_Max,ey_Max]]])
#Draw detected lines in the image
drawn_img = fld.drawSegments(gray,lineMax,True)
cv2.circle(drawn_img, (bx_Max, by_Max), 1, (255,0,0), 2)#line begin
cv2.circle(drawn_img, (ex_Max, ey_Max), 1, (0,255,0), 2)#line end
 
cv2.imshow("FLD", drawn_img)
cv2.waitKey(0)

7. 录像

import cv2
import numpy as np
import time, datetime
import sys
def camera_record(fnamesave):

       """
       函数名:cv2.VideoCapture()
       功  能:通过摄像头捕获实时图像数据
       返回值:有
       参数一:摄像头代号,0为默认摄像头,笔记本内建摄像头一般为 0
              或者填写视频名称直接加载本地视频文件
       """
       url = "rtsp://admin:zxcvbnm123@192.168.121.8/Streaming/Channels/2" # 可以使用通道1或者2
       cap = cv2.VideoCapture(url)  # 创建一个 VideoCapture 对象,打开摄像头
       time_begin = time.time()
       """
       函数名:cap.set( propId , value )
       功  能:设置视频参数。设置视频的宽高值和摄像头有关
              使用笔记本内置摄像头时只能设置为 1280*720 以及 640*480,哪怕设置值不同时都会自动校正过来,并且仍然返回 True
       返回值:布尔值
       参数一:需要设置的视频参数
       参数二:设置的参数值
       """
       # cap.set(3, 480)
       # cap.set(4, 320)

       flag = 1;  # 设置一个标志,用来输出视频信息
       """
       函数名:cv2.isOpened()
       功  能:返回一个布尔值( True / False ),检查是否初始化成功,成功返回 True
       返回值:布尔值
       """

       # fourcc = cv2.VideoWriter_fourcc(*'XVID')#视频存储的格式
       # fourcc = cv2.VideoWriter_fourcc(*'MJPG')
       fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
       fps = cap.get(cv2.CAP_PROP_FPS)  # 帧率
       # 视频的宽高
       size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), \
              int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
       
       # print(fnamesave)
       out = cv2.VideoWriter(fnamesave, fourcc, fps, size)  # 视频存储       

       while (out.isOpened()):  # 循环读取每一帧
              """
              函数名:cap.read()
              功  能:返回两个值
                     先返回一个布尔值,如果视频读取正确,则为 True,如果错误,则为 False,也可用来判断是否到视频末尾
                     再返回一个值,为每一帧的图像,该值是一个三维矩阵
                     通用接收方法为:
                     ret,frame = cap.read();
                     这样 ret 存储布尔值,frame 存储图像
                     若使用一个变量来接收两个值,如
                     frame = cap.read()
                     则 frame 为一个元组,原来使用 frame 处需更改为 frame[1]
              返回值:R1:布尔值
                     R2:图像的三维矩阵
              """
              if time.time()-time_begin > 3600:  # 3600秒,即一个小时
                     return 0
              ret_flag, Vshow = cap.read()
              # gray = cv2.cvtColor(Vshow,cv2.COLOR_BGR2GRAY)
              # cv2.imshow("Gray",gray)
              if ret_flag is False:  # ret为false则关闭
                     exit()

              cv2.namedWindow('video', cv2.WINDOW_AUTOSIZE)  # 创建一个名为video的窗口
              cv2.imshow("video", Vshow)  # 窗口显示,显示名为 Capture_Test
              out.write(Vshow)  # 将捕捉到的图像存储

              k = cv2.waitKey(1) & 0xFF  # 每帧数据延时 1ms,延时不能为 0,否则读取的结果会是静态帧
              if k == ord('s'):  # 若检测到按键 ‘s’,打印字符串
                     """
                     函数名:cap.get( propId )
                     功  能:查询视频的参数
                     返回值:无
                     参数一:查询的视频参数,其中部分值可以使用 cap.set() 进行修改
                     """
                     print(cap.get(3))
                     print(cap.get(4))

              elif k == ord('q'):  # 若检测到按键 ‘q’,退出
                     sys.exit(0)
                     break

       cap.release()  # 释放摄像头
       out.release()
       cv2.destroyAllWindows()  # 删除建立的全部窗口

if __name__ == "__main__":
    while True:
       fname=datetime.datetime.now().strftime('outvideo%Y-%m-%d-%H') # 一个小时换一次文件名
       fdir = r'D:/'
       fnamesave = fdir+fname+r'.mp4'
       camera_record(fnamesave)
       

8. 摄像头设置cap.set()

import cv2
 
#选择摄像头号,一般从 0 开始
cap = cv2.VideoCapture(0)
 
#先设置参数,然后读取参数
for i in range(47):
    print("No.={} parameter={}".format(i,cap.get(i)))
 
while True:
    ret, img = cap.read()
    cv2.imshow("input", img)
# 按 ESC 键退出
    key = cv2.waitKey(10)
    if key == 27:
        break
 
cv2.destroyAllWindows() 
cv2.VideoCapture(0).release()

运行结果可以看到,那些不是-1的,就是可以设置。关于序号的说明如下:

0. CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
1. CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
2. CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file
3. CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
4. CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
5. CV_CAP_PROP_FPS Frame rate.
6. CV_CAP_PROP_FOURCC 4-character code of codec.
7. CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
8. CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
9. CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
10. CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
11. CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
12. CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
13. CV_CAP_PROP_HUE Hue of the image (only for cameras).
14. CV_CAP_PROP_GAIN Gain of the image (only for cameras).
15. CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
16. CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
17. CV_CAP_PROP_WHITE_BALANCE Currently unsupported
18. CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)

9. 三维显示灰度图

Y = np.arange(0, np.shape(img_gray)[0], 1)
X = np.arange(0, np.shape(img_gray)[1], 1)
X, Y = np.meshgrid(X, Y)
fig = plt.figure()
ax = plt.axes(projection="3d")
ax.plot_surface(X, Y, img_gray, cmap='hot') #'gist_rainbow')  #  cmap='hot'
plt.show()

说明:输入灰度图(img_gray),X, Y是图像矩阵的两个维度。灰度值是第三维。可以看到灰度和人眼感知之间的关系。

相关文章

网友评论

      本文标题:图像处理常见方法

      本文链接:https://www.haomeiwen.com/subject/bgrdwktx.html