JMM相关

作者: 拿拿guardian | 来源:发表于2020-08-14 14:06 被阅读0次

JMM由来

由于CPU的运算速度与CUP访问内存的速度有数量级的差异,为了避免CPU无效的等待,在CPU和内存之间加入了高速缓存。运算时将数据从内存复制到高速缓存,CPU从高速缓存读取并操作;CPU操作结束后,再将数据写回到高速缓存,由高速缓存写回内存。
高速缓存可以理解成每个线程的工作内存。对于一些存储在主内存的共享变量,每个线程操作这些变量时,先将主内存里的共享变量,拷贝一份到自己的工作内存,操作完后,再由工作内存写回到主内存。这就存在一个缓存一致性问题,不同线程对同一个共享变量修改后的数据产生不同的数据,到底以谁的为准呢?为了解决这个缓存一致性问题,需要制定一套变量在工作内存和主内存之间读写的规范,这套规范就是JMM。

java内存模型(Java Memory Model,JMM)是关于java虚拟机的一套规范,用来定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样底层细节。需要注意的是这里的变量跟我们写java程序中的变量不是完全等同的。这里的变量是指实例字段,静态字段,构成数组对象的元素,但是不包括局部变量和方法参数(因为这是线程私有的)。这里可以简单的认为主内存是java虚拟机内存区域中的堆,局部变量和方法参数是在虚拟机栈中定义的。

Java内存模型中涉及到的概念

  • 主内存:java虚拟机规定所有的变量(不是程序中的变量)都必须在主内存中产生,为了方便理解,可以认为是堆区。可以与前面说的物理机的主内存相比,只不过物理机的主内存是整个机器的内存,而虚拟机的主内存是虚拟机内存中的一部分。

  • 工作内存:java虚拟机中每个线程都有自己的工作内存,该内存是线程私有的为了方便理解,可以认为是虚拟机栈。可以与前面说的高速缓存相比。线程的工作内存保存了线程需要的变量在主内存中的副本。虚拟机规定,线程对主内存变量的修改必须在线程的工作内存中进行,不能直接读写主内存中的变量。不同的线程之间也不能相互访问对方的工作内存。如果线程之间需要传递变量的值,必须通过主内存来作为中介进行传递。
    这里需要说明一下:主内存、工作内存与java内存区域中的java堆、虚拟机栈、方法区并不是一个层次的内存划分。这两者是基本上是没有关系的,上文只是为了便于理解,做的类比

    image

工作内存与主内存交互

java虚拟机中主内存和工作内存交互,就是一个变量如何从主内存传输到工作内存中,如何把修改后的变量从工作内存同步回主内存


image.png

lock(锁定):作用于主内存的变量,一个变量在同一时间只能一个线程锁定,该操作表示这条线成独占这个变量
unlock(解锁):作用于主内存的变量,表示这个变量的状态由处于锁定状态被释放,这样其他线程才能对该变量进行锁定
read(读取):作用于主内存变量,表示把一个主内存变量的值传输到线程的工作内存,以便随后的load操作使用
load(载入):作用于线程的工作内存的变量,表示把read操作从主内存中读取的变量的值放到工作内存的变量副本中(副本是相对于主内存的变量而言的)
use(使用):作用于线程的工作内存中的变量,表示把工作内存中的一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时就会执行该操作
assign(赋值):作用于线程的工作内存的变量,表示把执行引擎返回的结果赋值给工作内存中的变量,每当虚拟机遇到一个给变量赋值的字节码指令时就会执行该操作
store(存储):作用于线程的工作内存中的变量,把工作内存中的一个变量的值传递给主内存,以便随后的write操作使用
write(写入):作用于主内存的变量,把store操作从工作内存中得到的变量的值放入主内存的变量中

如果要把一个变量从主内存传输到工作内存,那就要顺序的执行read和load操作,如果要把一个变量从工作内存回写到主内存,就要顺序的执行store和write操作。对于普通变量,虚拟机只是要求顺序的执行,并没有要求连续的执行,所以如下也是正确的。对于两个线程,分别从主内存中读取变量a和b的值,并不一样要read a; load a; read b; load b; 也会出现如下执行顺序:read a; read b; load b; load a; (对于volatile修饰的变量会有一些其他规则,后边会详细列出),对于这8中操作,虚拟机也规定了一系列规则,在执行这8中操作的时候必须遵循如下的规则:

1.不允许read和load、store和write操作之一单独出现,也就是不允许从主内存读取了变量的值但是工作内存不接收的情况,或者不允许从工作内存将变量的值回写到主内存但是主内存不接收的情况;
2.不允许一个线程丢弃最近的assign操作,也就是不允许线程在自己的工作线程中修改了变量的值却不同步/回写到主内存;
3.不允许一个线程回写没有修改的变量到主内存,也就是如果线程工作内存中变量没有发生过任何assign操作,是不允许将该变量的值回写到主内存;
4.变量只能在主内存中产生,不允许在工作内存中直接使用一个未被初始化的变量,也就是没有执行load或者assign操作。也就是说在执行use、store之前必须对相同的变量执行了load、assign操作;
5.一个变量在同一时刻只能被一个线程对其进行lock操作,也就是说一个线程一旦对一个变量加锁后,在该线程没有释放掉锁之前,其他线程是不能对其加锁的,但是同一个线程对一个变量加锁后,可以继续加锁,同时在释放锁的时候释放锁次数必须和加锁次数相同;
6.对变量执行lock操作,就会清空工作空间该变量的值,执行引擎使用这个变量之前,需要重新load或者assign操作初始化变量的值;
7.不允许对没有lock的变量执行unlock操作,如果一个变量没有被lock操作,那也不能对其执行unlock操作,当然一个线程也不能对被其他线程lock的变量执行unlock操作;
8.对一个变量执行unlock之前,必须先把变量同步回主内存中,也就是执行store和write操作;

当然,最重要的还是如开始所说,这8个动作必须是原子的,不可分割的。

volatile修饰的变量的特殊规则

关键字volatile可以说是java虚拟机中提供的最轻量级的同步机制。java内存模型对volatile专门定义了一些特殊的访问规则。这些规则有些晦涩拗口,先列出规则,然后用更加通俗易懂的语言来解释:
假定T表示一个线程,V和W分别表示两个volatile修饰的变量,那么在进行read、load、use、assign、store和write操作的时候需要满足如下规则:

1.只有当线程T对变量V执行的前一个动作是load,线程T对变量V才能执行use动作;同时只有当线程T对变量V执行的后一个动作是use的时候线程T对变量V才能执行load操作。所以,线程T对变量V的use动作和线程T对变量V的read、load动作相关联,必须是连续一起出现。也就是在线程T的工作内存中,每次使用变量V之前必须从主内存去重新获取最新的值,用于保证线程T能看得见其他线程对变量V的最新的修改后的值。
2.只有当线程T对变量V执行的前一个动作是assign的时候,线程T对变量V才能执行store动作;同时只有当线程T对变量V执行的后一个动作是store的时候,线程T对变量V才能执行assign动作。所以,线程T对变量V的assign操作和线程T对变量V的store、write动作相关联,必须一起连续出现。也即是在线程T的工作内存中,每次修改变量V之后必须立刻同步回主内存,用于保证线程T对变量V的修改能立刻被其他线程看到。
3.假定动作A是线程T对变量V实施的use或assign动作,动作F是和动作A相关联的load或store动作,动作P是和动作F相对应的对变量V的read或write动作;类似的,假定动作B是线程T对变量W实施的use或assign动作,动作G是和动作B相关联的load或store动作,动作Q是和动作G相对应的对变量W的read或write动作。如果动作A先于B,那么P先于Q。也就是说在同一个线程内部,被volatile修饰的变量不会被指令重排序,保证代码的执行顺序和程序的顺序相同。

总结上面三条规则,前面两条可以概括为:volatile类型的变量保证对所有线程的可见性。第三条为:volatile类型的变量禁止指令重排序优化。

valatile类型的变量保证对所有线程的可见性

可见性是指当一个线程修改了这个变量的值,新值(修改后的值)对于其他线程来说是立即可以得知的。正如上面的前两条规则规定,volatile类型的变量每次值被修改了就立即同步回主内存,每次使用时就需要从主内存重新读取值。返回到前面对普通变量的规则中,并没有要求这一点,所以普通变量的值是不会立即对所有线程可见的。
误解:volatile变量对所有线程是立即可见的,所以对volatile变量的所有修改(写操作)都立刻能反应到其他线程中。或者换句话说:volatile变量在各个线程中是一致的,所以基于volatile变量的运算在并发下是线程安全的。
这个观点的论据是正确的,但是根据论据得出的结论是错误的,并不能得出这样的结论。volatile的规则,保证了read、load、use的顺序和连续行,同理assign、store、write也是顺序和连续的。也就是这几个动作是原子性的,但是对变量的修改,或者对变量的运算,却不能保证是原子性的。如果对变量的修改是分为多个步骤的,那么多个线程同时从主内存拿到的值是最新的,但是经过多步运算后回写到主内存的值是有可能存在覆盖情况发生的。如下代码的例子:

public class VolatileTest {
  public static volatile int race = 0;
  public static void increase() {
    race++
  }

  private static final int THREADS_COUNT = 20;

  public void static main(String[] args) {
      Thread[] threads = new Thread[THREADS_COUNT);
      for (int = 0; i < THREADS_COUNT; i++) {
          threads[i] = new Thread(new Runnable(){
              @Override
              public void run() {
                  for (int j = 0; j < 10000; j++) {
                     increase();
                  }
              }
          });
          threads[i].start();
      }
      while (Thread.activeCount() > 1) {
         Thread.yield();
      }
      System.out.println(race);
  }
}

代码就是对volatile类型的变量启动了20个线程,每个线程对变量执行1w次加1操作,如果volatile变量并发操作没有问题的话,那么结果应该是输出20w,但是结果运行的时候每次都是小于20w,这就是因为race++操作不是原子性的,是分多个步骤完成的。假设两个线程a、b同时取到了主内存的值,是0,这是没有问题的,在进行++操作的时候假设线程a执行到一半,线程b执行完了,这时线程b立即同步给了主内存,主内存的值为1,而线程a此时也执行完了,同步给了主内存,此时的值仍然是1,线程b的结果被覆盖掉了。

volatile变量禁止指令重排序优化

普通的变量仅仅会保证在该方法执行的过程中,所有依赖赋值结果的地方都能获取到正确的结果,但不能保证变量赋值的操作顺序和程序代码的顺序一致。因为在一个线程的方法执行过程中无法感知到这一点,这也就是java内存模型中描述的所谓的“线程内部表现为串行的语义”。
也就是在单线程内部,我们看到的或者感知到的结果和代码顺序是一致的,即使代码的执行顺序和代码顺序不一致,但是在需要赋值的时候结果也是正确的,所以看起来就是串行的。但实际结果有可能代码的执行顺序和代码顺序是不一致的。

long和double变量的特殊规则

Java内存模型要求对主内存和工作内存交换的八个动作是原子的,正如章节开头所讲,对long和double有一些特殊规则。八个动作中lock、unlock、read、load、use、assign、store、write对待32位的基本数据类型都是原子操作,对待long和double这两个64位的数据,java虚拟机规范对java内存模型的规定中特别定义了一条相对宽松的规则:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,也就是允许虚拟机不保证对64位数据的read、load、store和write这4个动作的操作是原子的。这也就是我们常说的long和double的非原子性协定(Nonautomic Treatment of double and long Variables)。

JMM 保证线程安全是围绕原子性、可见性、有序性这 3 个特性来建立的

原子性(Automicity)

由Java内存模型来直接保证原子性的变量操作包括read、load、use、assign、store、write这6个动作,虽然存在long和double的特例,但基本可以忽律不计,目前虚拟机基本都对其实现了原子性。如果需要更大范围的控制,lock和unlock也可以满足需求。lock和unlock虽然没有被虚拟机直接开给用户使用,但是提供了字节码层次的指令monitorenter和monitorexit对应这两个操作,对应到java代码就是synchronized关键字,因此在synchronized块之间的代码都具有原子性。

可见性

可见性是指一个线程修改了一个变量的值后,其他线程立即可以感知到这个值的修改。volatile类型的变量在修改后会立即同步给主内存,在使用的时候会从主内存重新读取,是依赖主内存为中介来保证多线程下变量对其他线程的可见性的。
除了volatile,synchronized和final也可以实现可见性。synchronized关键字是通过unlock之前必须把变量同步回主内存来实现的,final则是在初始化后就不会更改,所以只要在初始化过程中没有把this指针传递出去也能保证对其他线程的可见性。

有序性

有序性从不同的角度来看是不同的。单纯单线程来看都是有序的,但到了多线程就会跟我们预想的不一样。可以这么说:如果在本线程内部观察,所有操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句说的就是“线程内表现为串行的语义”,后半句值得是“指令重排序”现象和主内存与工作内存之间同步存在延迟的现象。
保证有序性的关键字有volatile和synchronized,volatile禁止了指令重排序,而synchronized则由“一个变量在同一时刻只能被一个线程对其进行lock操作”来保证。

总体来看,synchronized对三种特性都有支持,虽然简单,但是如果无控制的滥用对性能就会产生较大影响。

问题导致的原因

缓存导致的可见性问题
切换线程导致的原子性问题
编译优化带来的有序性问题「指令重排」

相关文章

网友评论

      本文标题:JMM相关

      本文链接:https://www.haomeiwen.com/subject/bheidktx.html