1.利用逻辑回归进行二分类
1.1 批量梯度上升方法
from math import *
from numpy import *
import matplotlib.pyplot as plt
def loadDataSet():
dataMat = []; labelMat = []
fr = open("testSet.txt")
for line in fr:
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat, labelMat
def sigmoid(inX):
return 1.0 / (1+exp(-inX))
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn)
labelMat = mat(classLabels).transpose()
m, n = shape(dataMatrix)
alpha = 0.001
maxCycle = 500
weights = ones((n, 1))
for k in range(maxCycle):
h = sigmoid(dataMatrix * weights)
error = labelMat - h
weights = weights + alpha*dataMatrix.transpose()*error
return weights
def plotBestFit(wei):
weights = wei.getA()
dataMat, labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataMat)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i, 1]); ycord1.append(dataArr[i, 2])
else:
xcord2.append(dataArr[i, 1]); ycord2.append(dataArr[i, 2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1'); plt.ylabel('X2')
plt.show()
dataArr, labelMat = loadDataSet()
weight = gradAscent(dataArr, labelMat)
print(weight)
plotBestFit(weight)
代码中将数据添加第一列变量全部为1,是因为考虑到分割方程的0次项目,因为假设的分割线方程为
所以当时具有函数接近1,否则接近0
所以我们最终求出来的weigt的三个变量对应的是 w_0,w_1,w_2,并且x_2是y轴坐标,所以分割线方程就是源码中的形式了,如图是分类的结果(批量梯度上升300次):
Figure_1.png1.2随机梯度上升
def stocGraAscent0(dataMatrix, classLabels):
dataMatrix = array(dataMatrix)
m, n= shape(dataMatrix)
alpha = 0.01
weights = ones(n)
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha*dataMatrix[i]*error
return weights
随机梯度上升的记过如图所示,可能没有批量梯度上升的好,但是由于样本数目少,所以体现不出优越性(有三分之一的样本出现问题),但是当样本数目变大时,随机梯度上升的运算量和速度就明显了。
Figure_2.png1.3改进随机梯度上升
随机梯度上升的步长固定且随机性没有得到充分发挥,因此有一定的局限性,导致权重值会在一定的范围内徘徊,所以可以对随机梯度上升的方法进行改进,自适应步长,下图3是改进梯度上升法迭代20次的结果,因此可以充分体现优越性
def stocGraAscent1(dataMatrix, classLabels, numIter=150):
dataMatrix = array(dataMatrix)
m, n = shape(dataMatrix)
weights = ones(n)
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/(1.0+j+i)+0.01
ranIndex = int(random.uniform(0, len(dataIndex)))
h = sigmoid(sum(dataMatrix[ranIndex]*weights))
error = classLabels[ranIndex] - h
weights = weights + alpha*error*dataMatrix[ranIndex]
# del(dataIndex[ranIndex])
return weights
Figure_3.png
2.1预测病马的死亡率
def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0
else: return 0.0
def colicTest():
frTrain = open('horseColicTraining.txt')
frTest = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in frTrain:
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGraAscent1(trainingSet, trainingLabels, 500)
errorCount = 0; numTestVec = 0.0
for line in frTest:
numTestVec += 1.0
currLine = line.strip().split()
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights)) !=int(int(currLine[21])):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print("The error rate of this test is: %f" % errorRate)
return errorRate
def multiTest():
numTests = 10; errorSum = 0.0
for k in range(numTests):
errorSum += colicTest()
print("After %d iterration the average error rate is: %f" % (numTests, errorSum/float(numTests)))
最终预测结果为
The error rate of this test is: 0.373134
The error rate of this test is: 0.328358
The error rate of this test is: 0.253731
The error rate of this test is: 0.343284
The error rate of this test is: 0.417910
The error rate of this test is: 0.313433
The error rate of this test is: 0.507463
The error rate of this test is: 0.298507
The error rate of this test is: 0.223881
The error rate of this test is: 0.522388
After 10 iterration the average error rate is: 0.358209
Process finished with exit code 0
由于样本中信息缺失达到百分之30,所以结果还算可以接受,最低可以调整到百分之20左右,通过调整迭代次数。
网友评论