Python中的十大图像处理工具

作者: 烟雨丿丶蓝 | 来源:发表于2019-06-08 13:28 被阅读5次
    image

    本文主要介绍了一些简单易懂最常用的Python图像处理库

    当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。

    图像处理中的常见任务包括显示图像,基本操作(如裁剪、翻转、旋转等),图像分割,分类和特征提取,图像恢复和图像识别等。 Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。

    让我们看一下用于图像处理任务的一些常用Python库。

    在这推荐下小编创建的Python学习交流群835017344,可以获取Python入门基础教程,送给每一位小伙伴,这里是小白聚集地,每天还会直播和大家交流分享经验哦,欢迎初学和进阶中的小伙伴。

    1. scikit Image

    scikit-image是一个基于numpy数组的开源Python包。 它实现了用于研究、教育和工业应用的算法和实用程序。 即使是对于那些刚接触Python的人,它也是一个相当简单的库。 此库代码质量非常高并已经过同行评审,是由一个活跃的志愿者社区编写的。

    使用说明文档:

    https://scikit-image.org/docs/stable/user_guide.html

    用法举例: 图像过滤、 模版匹配

    可使用“skimage”来导入该库。大多数功能都能在子模块中找到。

    <span><span>import</span> matplotlib.pyplot <span>as</span> plt</span>

    <span>%matplotlib <span>inline</span></span>

    <span>from skimage <span>import</span> <span>data</span>,filters</span>

    <span>image = <span>data</span>.coins()</span>

    <span># ... or any other NumPy array!</span>

    <span>edges = filters.sobel(image)</span>

    <span>plt.imshow(edges, cmap=<span>'gray'</span>)</span>

    image

    模版匹配(使用match_template函数)

    image

    gallery上还有更多例子。

    https://scikit-image.org/docs/dev/auto_examples/

    2. Numpy

    Numpy是Python编程的核心库之一,支持数组结构。 图像本质上是包含数据点像素的标准Numpy数组。 因此,通过使用基本的NumPy操作——例如切片、脱敏和花式索引,可以修改图像的像素值。 可以使用skimage加载图像并使用matplotlib显示。

    使用说明文档:

    http://www.numpy.org/

    用法举例: 使用Numpy来对图像进行脱敏处理

    <span style="">import numpy as np</span>

    <span>from skimage import data</span>

    <span>import matplotlib.pyplot as plt</span>

    <span>%matplotlib inline</span>

    <span>image = data.camera()</span>

    <span>type(image)</span>

    <span>numpy.ndarray #Image is a numpy array</span>

    <span>mask = image < 87</span>

    <span>image[mask]=255</span>

    <span>plt.imshow(image, cmap='gray')</span>

    image

    3. Scipy

    scipy是Python的另一个核心科学模块,就像Numpy一样,可用于基本的图像处理和处理任务。值得一提的是,子模块scipy.ndimage提供了在n维NumPy数组上运行的函数。 该软件包目前包括线性和非线性滤波、二进制形态、B样条插值和对象测量等功能。

    使用说明文档:

    https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution

    用法举例: 使用SciPy的高斯滤波器对图像进行模糊处理

    <span><span>from scipy import misc,ndimage</span></span>

    <span>face = misc.face()</span>

    <span>blurred_face = ndimage.gaussian_filter(face, sigma=3)</span>

    <span>very_blurred = ndimage.gaussian_filter(face, sigma=5)</span>

    <span>#Results</span>

    <span>plt.imshow(<image to be displayed>)</span>

    image

    4. PIL/ Pillow

    PIL (Python Imaging Library)是一个免费的Python编程语言库,它增加了对打开、处理和保存许多不同图像文件格式的支持。 然而,它的发展停滞不前,其最后一次更新还是在2009年。幸运的是, PIL有一个正处于积极开发阶段的分支Pillow,它非常易于安装。Pillow能在所有主要操作系统上运行并支持Python 3。该库包含基本的图像处理功能,包括点操作、使用一组内置卷积内核进行过滤以及颜色空间转换。

    使用说明文档:

    https://pillow.readthedocs.io/en/3.1.x/index.html

    用法举例: 使用ImageFilter增强Pillow中的图像

    <span><span>from</span> PIL <span>import</span> Image, ImageFilter</span>

    <span><span>#Read image</span></span>

    <span>im = Image.open( <span>'image.jpg'</span> )</span>

    <span><span>#Display image</span></span>

    <span>im.show()</span>

    <span><span>from</span> PIL <span>import</span> ImageEnhance</span>

    <span>enh = ImageEnhance.Contrast(im)</span>

    <span>enh.enhance(<span>1.8</span>).show(<span>"30% more contrast"</span>)</span>

    image

    5. OpenCV-Python

    OpenCV( 开源计算机视觉库,Open Source Computer Vision Library)是计算机视觉应用中使用最广泛的库之一。OpenCV-Python是OpenCV的python API。 OpenCV-Python不仅速度快(因为后台由用C / C ++编写的代码组成),也易于编码和部署(由于前端的Python包装器)。 这使其成为执行计算密集型计算机视觉程序的绝佳选择。

    使用说明文档:

    https://github.com/abidrahmank/OpenCV2-Python-Tutorials

    用法举例:使用Pyramids创建一个名为'Orapple'的新水果的功能

    image

    6. SimpleCV

    SimpleCV也是用于构建计算机视觉应用程序的开源框架。 通过它可以访问如OpenCV等高性能的计算机视觉库,而无需首先了解位深度、文件格式或色彩空间等。学习难度远远小于OpenCV,并且正如他们的标语所说,“ 它使计算机视觉变得简单 ”。支持SimpleCV的一些观点是:

    • 即使是初学者也可以编写简单的机器视觉测试

    • 摄像机、视频文件、图像和视频流都可以交互操作

    使用说明文档:

    https://simplecv.readthedocs.io/en/latest/

    用法举例

    image

    7. Mahotas

    Mahotas是另一个用于Python的计算机视觉和图像处理库。 它包含传统的图像处理功能(如滤波和形态学操作)以及用于特征计算的更现代的计算机视觉功能(包括兴趣点检测和局部描述符)。 该接口使用Python,适用于快速开发,但算法是用C ++实现的,并且针对速度进行了优化。Mahotas库运行很快,它的代码很简单,(对其它库的)依赖性也很小。 建议阅读他们的官方文档以了解更多内容。

    使用说明文档:

    https://mahotas.readthedocs.io/en/latest/install.html

    用法举例

    Mahotas库使用简单的代码来完成工作。 对于“ 寻找Wally ”的问题,Mahotas完成的得很好,而且代码量非常小。

    image image

    8. SimpleITK

    ITK(Insight Segmentation and Registration Toolkit)是一个开源的跨平台系统,为开发人员提供了一整套用于图像分析的软件工具。 其中, SimpleITK是一个建立在ITK之上的简化层,旨在促进其在快速原型设计、教育以及脚本语言中的使用。SimpleITK是一个包含大量组件的图像分析工具包,支持一般的过滤操作、图像分割和配准。 SimpleITK本身是用C++编写的,但可用于包括Python在内的大量编程语言。

    使用说明文档:

    https://github.com/hhatto/pgmagick

    这里有大量说明了如何使用SimpleITK进行教育和研究活动的Jupyter notebook。notebook中演示了如何使用SimpleITK进行使用Python和R编程语言的交互式图像分析。

    用法举例

    下面的动画是使用SimpleITK和Python创建的可视化的严格CT / MR配准过程。

    image

    9. pgmagick

    pgmagick是GraphicsMagick库基于Python的包装器。GraphicsMagick 图像处理系统有时被称为图像处理的瑞士军刀。它提供了强大而高效的工具和库集合,支持超过88种主要格式图像的读取、写入和操作,包括DPX,GIF,JPEG,JPEG-2000,PNG,PDF,PNM和TIFF等重要格式。

    使用说明文档:

    https://github.com/hhatto/pgmagick

    用法举例: 图片缩放、 边缘提取

    image

    图片缩放

    image

    边缘提取

    10. Pycairo

    Pycairo是图形库cairo的一组python绑定。 Cairo是一个用于绘制矢量图形的2D图形库。 矢量图形很有趣,因为它们在调整大小或进行变换时不会降低清晰度。Pycairo库可以从Python调用cairo命令。

    使用说明文档:

    https://github.com/pygobject/pycairo

    用法: Pycairo可以绘制线条、基本形状和径向渐变

    image

    以上就是一些免费的优秀图像处理Python库。有些很知名,你可能已经知道或者用过,有些可能对你来说还是新的。那正好现在就上手操作一下,试一试吧!

    相关文章

      网友评论

        本文标题:Python中的十大图像处理工具

        本文链接:https://www.haomeiwen.com/subject/bnrixctx.html