美文网首页
Tensorflow 实现 Logistics Regressi

Tensorflow 实现 Logistics Regressi

作者: 王小鸟_wpcool | 来源:发表于2017-12-18 15:20 被阅读0次

    今天学完了吴恩达 深度学习课程logistic回归,利用tensorflow 参照网上知识实现

    from  tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    learning_rate = 0.001
    training_epoch = 25
    batch_size = 100
    display_step = 1
    
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, 10])
    
    W = tf.placeholder(tf.zeros([784, 10]))
    b = tf.placeholder(tf.zeros([10]))
    
    pred = tf.nn.softmax(tf.matmul(x, W) + b)
    
    cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred)), reduction_indices=1)
    
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    
    init =tf.initialize_all_variables()
    
    with tf.Session() as sess:
      sess.run(init)
      for epoch in training_epoch:
          avg_cost = 0;
          total_batch = int(mnist.train.num_examples / batch_size)
          for i in range(total_batch):
              batch_xs, batch_ys = mnist.train.next_batch(batch_size)
              _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs, y: batch_ys})
              avg_cost += c / total_batch
          if (epoch + 1) % display_step == 0:
              print "Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)
      print "Optimization Finished!"
    
    
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print "Accuracy:", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]})
    
    

    相关文章

      网友评论

          本文标题:Tensorflow 实现 Logistics Regressi

          本文链接:https://www.haomeiwen.com/subject/bnrmwxtx.html