美文网首页
R for data science chap18——模型构建.

R for data science chap18——模型构建.

作者: 陆慕熙 | 来源:发表于2020-06-20 16:46 被阅读0次

    1、计算每日航班数量

    计算每日航班数量

    > daily <-  flights %>%
    +   mutate(date=make_date(year,month,day)) %>%
    +   group_by(date) %>%
    +   summarize(n=n())
    `summarise()` ungrouping output (override with `.groups` argument)
    > daily
    # 可视化
    > ggplot(daily,aes(date,n))+
    +   geom_line()
    
    image.png
    • n()的用法:分组计数
    > daily <-  flights %>%
    +   mutate(date=make_date(year,month,day)) %>%
    +   group_by(date)
    > daily
    > daily
    # A tibble: 336,776 x 20
    # Groups:   date [365]
        year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
       <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
     1  2013     1     1      517            515         2      830            819
     2  2013     1     1      533            529         4      850            830
     3  2013     1     1      542            540         2      923            850
     4  2013     1     1      544            545        -1     1004           1022
     5  2013     1     1      554            600        -6      812            837
     6  2013     1     1      554            558        -4      740            728
     7  2013     1     1      555            600        -5      913            854
     8  2013     1     1      557            600        -3      709            723
     9  2013     1     1      557            600        -3      838            846
    10  2013     1     1      558            600        -2      753            745
    > count(group_by(daily,date))
    # A tibble: 365 x 2
    # Groups:   date [365]
       date           n
       <date>     <int>
     1 2013-01-01   842
     2 2013-01-02   943
     3 2013-01-03   914
     4 2013-01-04   915
     5 2013-01-05   720
     6 2013-01-06   832
     7 2013-01-07   933
     8 2013-01-08   899
     9 2013-01-09   902
    10 2013-01-10   932
    

    数据显然有以周为单位的变化,这影响了数据的长期观察。

    检查航班数量在每一天正宗的分布

    > Sys.setlocale("LC_ALL","English")
    [1] "LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252"
    > daily <-  daily %>%
    +   mutate(wday=wday(date,label = T,locale = Sys.getlocale(category = "LC_TIME")))
    > daily
    # A tibble: 365 x 3
       date           n wday 
       <date>     <int> <ord>
     1 2013-01-01   842 Tue  
     2 2013-01-02   943 Wed  
     3 2013-01-03   914 Thu  
     4 2013-01-04   915 Fri  
     5 2013-01-05   720 Sat  
     6 2013-01-06   832 Sun  
     7 2013-01-07   933 Mon  
     8 2013-01-08   899 Tue  
     9 2013-01-09   902 Wed  
    10 2013-01-10   932 Thu  
    # ... with 355 more rows
    > ggplot(daily,aes(wday,n))+
    +   geom_boxplot()
    
    image.png

    必须把locale设为英文环境,否则lucbridate会根据当前环境读取中文,显示中文的星期几

    消除强烈的模式——建立模型

    > ## 拟合模型
    > mod <-  lm(n~wday,data = daily)
    > grid <-  daily %>% 
    +   data_grid(wday) %>% 
    +   add_predictions(mod,"n")
    > ggplot(daily,aes(wday,n))+
    +   geom_boxplot()+
    +   geom_point(data = grid,aes(wday,n),color="red",size=4)
    > ggplot(daily,aes(wday,n))+
    +   geom_boxplot()+
    +   geom_point(data = grid,color="red",size=4)
    > grid <-  daily %>% 
    +   data_grid(wday) %>% 
    +   add_predictions(mod,"n")
    > ggplot(daily,aes(wday,n))+
    +   geom_boxplot()+
    +   geom_point(data = grid,color="red",size=4)
    
    image.png

    分析残差

    > daily <- daily %>% 
    +   add_residuals(mod) 
    > daily %>% 
    +   ggplot(aes(date,resid))+
    +   geom_ref_line(h=0)+
    +   geom_line()
    
    image.png

    六月开始模型并不适用
    →进一步分析——按照wday分别展示

    按照wday分别展示

    daily %>% 
      ggplot(aes(date,resid,color=wday))+
      geom_ref_line(h=0)+
      geom_line()
    # 显示航班特别少的日期
    daily %>% 
      filter(resid < -100)
    
    image.png

    显示更平滑的长期趋势: smooth()

    daily %>% 
      ggplot(aes(date,resid))+
      geom_ref_line(h=0)+
      geom_line(color="grey50")+
      geom_smooth(se=F,span=0.20)
    
    image.png

    季节性星期六效应

    > daily %>% 
    +   filter(wday=="Sat") %>% 
    +   ggplot(aes(date,n))+
    +   geom_point()+
    +   geom_line()+
    +   scale_x_date(
    +     NULL,
    +     date_breaks = "1 month",
    +    date_labels = "%b"
    +   )
    
    image.png

    labels = b% : 见strptime {base}
    %b
    Abbreviated month name in the current locale on this platform. (Also matches full name on input: in some locales there are no abbreviations of names.)

    从图中可看出周六航班的季节变化。可能与学期假期相关。

    按学期分类处理数据

    > term <-  function(date){
    +   cut(date,
    +       breaks = ymd(20130101,20130605,20130825,20140101),
    +       labels = c("spring","summer","fall"))
    + }
    > daily <-  daily %>% 
    +   mutate(term=term(date))
    > 
    > daily %>% 
    +   filter(wday == "Sat") %>% 
    +   ggplot(aes(date,n,color=term))+
    +   geom_point(alpha=1/3)+
    +   geom_line()+
    +   scale_x_date(
    +     NULL,
    +     date_breaks = "1 month",
    +     date_labels = "%b")
    
    image.png

    查看学期变量如何影响一周中其他wday

    daily %>% 
      ggplot(aes(wday,n,color=term))+
      geom_boxplot()
    
    image.png

    拟合去除每学期周内效应的模型

    mod1 <-  lm(n~wday,data = daily)
    mod2 <- lm(n~wday * term,data = daily)
    
    daily %>% 
      gather_residuals(without_term=mod1, with_term=mod2) %>% 
      ggplot(aes(date,resid,color=model))+
      geom_line()
    
    image.png

    将预测值覆盖到数据上

    grid <-  daily %>% 
      data_grid(wday,term) %>% 
      add_predictions(mod2,"n")
    
    ggplot(daily,aes(wday,n))+
      geom_boxplot()+
      geom_point(data = grid,color="red")+
      facet_wrap(~term)
    
    image.png

    发现问题:离群点
    解决:使用MASS::rlm()

    处理离群点—— MASS::rlm()

    library(MASS)
    mod3 <- rlm(n~wday * term,data = daily)
    daily %>% 
      add_residuals(mod3,"resid") %>% 
      ggplot(aes(date,resid))+
      geom_hline(yintercept = 0,size=2,color="white")+
      geom_line()
    
    image.png

    相关文章

      网友评论

          本文标题:R for data science chap18——模型构建.

          本文链接:https://www.haomeiwen.com/subject/bnywxktx.html