概念
树是有 n(n >= 0) 个结点的有限集,在任意一棵非空树中,有且仅有一个特定的称为根
的结点,当 n > 1 时,其余结点可分为 m(m > 0)个互不相交的有限集 ,,…,其中每个集合本身又是一棵树,并称为根的子树
。
树的结构定义是一个递归的定义。树的结点包含一个数据元素及若干个指向其子树的分支,结点拥有的子树数量称为结点的度
。
度为 0 的树称为叶子
或终端结点
,度不为 0 的结点称为非终端结点
或分支结点
。
除了根节点之外,分支结点也称为内部结点,树的度是树内各结点的度的最大值。例如上图中 A 的度为 3 , D 是 A 的孩子
,A 是 D 的双亲
。H 和 I 互为兄弟
。
树中结点的最大层次称为树的深度
或高度
,上图的深度为 4。
如果树中结点的子树从左向右是有序的,子树间不能互换位置,则称该树为有序树
,否则为无序树
。
由 n 棵互不相交的树组成的集合称为森林
。
树的特性
- 树中所有结点数等于所有结点的度加 1
还以上图为栗,A 的度为 3,B 的度为 2,C 的度为 1,D 的度为 3,E 的度为 2,H 的度为 1
3 + 2 + 1 + 3 + 2 + 1 = 12,结点总数为 13。
- 度为 m 的树上第 i 层最多有 个结点(i > = 1 )
A 的度为 3 ,第 2 层有 = 3 个结点。
-
高度为 H 的叉树最多有 ( - 1) / (m -1)个结点
-
具有 n 个结点的 m 叉树的最小高度为 [(n(m -1) + 1)]
网友评论