堆排序

作者: 水欣 | 来源:发表于2018-07-21 21:10 被阅读0次

堆排序

堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏、最好平均时间复杂度均为O(nlogn),它也是不稳定排序。首先了解下堆结构。

堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子节点的值,成为大顶堆;或者每个节点的值都小于或等于其左右孩子节点的值,成为小顶堆。如下图:


堆.png

同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数据中就是下面这个样子


数组.png
该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]

小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]

堆排序基本思想及步骤

堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾九尾最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行。便能得到一个有序序列了。

构造初始堆。将给定无序序列构造成一个大顶堆
  • 假设给定无序序列结构如下


    1.png
  • 此时我们从最后一个非叶子节点开始(页节点自然不用调整,第一个非叶子节点arr.length/2-1=5/2-1=1,也就是下面的6节点),从左至右,从下到上进行调整。


    2.png
  • 找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换


    3.png
  • 这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4,6


    5.png

此时,我们就将一个无序序列构造成了一个大顶堆

步骤二 将堆顶元素和末尾元素进行交换,使末尾元素最大,然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素,如此反复进行交换、重建、交换。
  • 将堆顶元素9和末尾元素4进行交换


    7.png
  • 重新调整结构,使其继续满足堆定义


    8.png
  • 再将堆顶元素8与末尾元素5进行交换,得到第二大元素8


    9.png

后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序


10.png

再简单总结下堆排序的基本思路:

  1. 将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
  2. 将堆顶元素与末尾元素交换,将最大元素“沉”到数组末端
  3. 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行+交换步骤,直到整个序列有序
package sortdemo;

import java.util.Arrays;

/**
 * Created by chengxiao on 2016/12/17.
 * 堆排序demo
 */
public class HeapSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        //1.构建大顶堆
        for(int i=arr.length/2-1;i>=0;i--){
            //从第一个非叶子结点从下至上,从右至左调整结构
            adjustHeap(arr,i,arr.length);
        }
        //2.调整堆结构+交换堆顶元素与末尾元素
        for(int j=arr.length-1;j>0;j--){
            swap(arr,0,j);//将堆顶元素与末尾元素进行交换
            adjustHeap(arr,0,j);//重新对堆进行调整
        }

    }

    /**
     * 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
     * @param arr
     * @param i
     * @param length
     */
    public static void adjustHeap(int []arr,int i,int length){
        int temp = arr[i];//先取出当前元素i
        for(int k=i*2+1;k<length;k=k*2+1){//从i结点的左子结点开始,也就是2i+1处开始
            if(k+1<length && arr[k]<arr[k+1]){//如果左子结点小于右子结点,k指向右子结点
                k++;
            }
            if(arr[k] >temp){//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
                arr[i] = arr[k];
                i = k;
            }else{
                break;
            }
        }
        arr[i] = temp;//将temp值放到最终的位置
    }

    /**
     * 交换元素
     * @param arr
     * @param a
     * @param b
     */
    public static void swap(int []arr,int a ,int b){
        int temp=arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }
}

总结

堆排序是一种选择排序,整体主要由构建初始堆+交换堆顶元素和末尾元素并重建堆两部分组成。其中构建初始堆经推到复杂度O(n),在交换堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)...1]逐步递减,近似为nlogn。所以堆排序时间复杂度一般认为就是O(nlogn)级。

相关文章

  • 堆排序

    目录 1.堆排序介绍 2.堆排序图文说明 3.堆排序的时间复杂度和稳定性 4.堆排序实现 堆排序介绍 堆排序(He...

  • 堆排序---基础篇

    本文主要介绍堆排序的一些基本过程和分析。 大纲 堆排序简介 堆排序代码实现 1. 堆排序简介 1.1 堆排序的存储...

  • 堆和堆排序

    最小K个数 堆排序 堆排序

  • JS实现堆排序

    原理 堆排序原理 实现 说明 堆排序对大文件很有效 堆排序是不稳定排序

  • iOS算法总结-堆排序

    iOS算法总结-堆排序 iOS算法总结-堆排序

  • 堆排序

    转载:图解排序算法(三)之堆排序 预备知识 堆排序 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选...

  • 排序

    原创 堆排序: 使用visit数组从本质出发获取大顶堆排序。

  • 堆排序

    堆排序

  • C++基础入门之模板堆排序(上):模板上的list的创造与操作

    整段源码链接C++的模板元堆排序 要点 组建数据结构list 组建对list的各种基本操作 堆排序中组建堆排序个个...

  • 3.2-选择排序-堆排序

    参考链接 选择排序:堆排序(Heap Sort) 白话经典算法系列之七 堆与堆排序 堆排序与快速排序,归并排序一样...

网友评论

      本文标题:堆排序

      本文链接:https://www.haomeiwen.com/subject/bslkmftx.html