今天跟大家分享的是六月份发表在Molecular Therapy-Nucleic Acids(IF: 7.032)上的一篇文章。文章主要讲的是,整合多维组学数据,利用生物信息学方法在乳腺癌中识别药物反应相关的lncRNA。有助于探索lncRNA作用机制,优化个性化药物治疗。
Inferences of Individual Drug Response-Related Long Non-coding RNAs Based on Integrating Multi-omics Data in Breast Cancer
基于乳腺癌多维组学数据预测药物反应相关长链非编码RNA
一、 摘要
个体药物反应的差异是乳腺癌(BRCA)治疗的障碍,因此预测反应将有助于规划治疗策略。癌症分子谱分析和药物反应数据的积累为鉴定BRCA中新的分子标记和肿瘤对药物的反应机制提供了机遇和挑战。这项研究使用依赖长链非编码RNA(lncRNA)的多组学集成系统评估了药物反应。研究人员通过结合lncRNA,microRNA,mRNA,甲基化水平,体细胞突变以及接受药物治疗的癌症患者的生存数据来鉴定与药物反应相关的lncRNA(DRlncs)。研究人员构建了一种集成的计算多组学方法,以识别BRCA中多种化学治疗药物的DRlncs。通过功能分析,共表达网络等生物信息方法以及实验验证,识别了Adriamycin, Cytoxan和Tamoxifen药物中关键的DRlncs。并且推断了相关DRlncs对BRCA耐药的药物应答中的可能机制。本研究为BRCA中基于lncRNA的临床药物反应评估提供了框架。
二、 材料方法
1、数据集:TCGA(版本:07-18-2019)乳腺癌mRNA,lncRNA和miRNA表达谱数据,DNA甲基化水平数据,体细胞突变数据,临床信息(包括生存时间和药物治疗信息);RAID2.0 数据库中实验验证的gene-lncRNA,miRNA-lncRNA互作数据。
2、数据处理:过滤了所有样本表达为0的项目。甲基化和体细胞突变利用BEDTools定位到lncRNA。
3、DRlncs识别:分为三个阶段,首先利用t检验确定患者之间的lncRNA,mRNA,miRNA和甲基化差异水平,计算突变风险得分;第二步将差异水平中的p值和突变风险得分作为风险评分;最后利用多维等级方法进行风险评分的排列,p值小于0.05的被识别为DRlncs。
4、乳腺癌中DRlncs分析:通过构建基因共表达网络、预后分析、功能富集分析等生物信息学方法以及实时定量PCR探索了乳腺癌中DRlncs。
三、 结果
1、基于多组学数据集成的BRCA患者多种药物个体DRlncs的识别。
图1. BRCA患者多种药物基于多组学数据整合的个体DRlncs的展示
2、通过分析DRlncs在药物中的表达水平,甲基化水平,突变情况,研究人员发现个体DRlncs对BRCA患者的多种药物表现出特定特征。
图2. 个体DRlncs在BRCA患者中特异性
3、与BRCA中药物反应相关的DRlncs基因共表达网络构建
图3.乳腺癌DRlncs共表达网络
4、为了评估DRlncs作为BRCA预后生物标志物的潜在价值,研究人员确定了多种药物中与患者生存显著相关的DRlncs。
图4.乳腺癌生存相关DRlncs
5、基于多种药物所有DRlncs的功能富集分析结果,研究人员推断了关键DRlncs的可能机制。
图5. DRlncs在BRCA不同药物中的作用及机制
6、实时定量PCR分析显示,与未化疗患者相比,Adriamycin治疗的患者,HOXA-AS2表达显著更高。与正常BRCA细胞相比,Adriamycin-resistant的BRCA细胞在用5mg / L阿霉素处理后具有更高的集落形成能力。
图6. HOXA-AS2可促进BRCA细胞Adriamycin耐药
四、 结论
本文( fen xi xu qiu wang zhi http://gaptechsxr.mikecrm.com/1vdMmqy)整合了TCGA lncRNA、miRNA、mRNA表达,DNA甲基化,体细胞突变,生存信息,药物反应信息的多维组学数据。基于实验证实的lncRNA互作关系,通过生物信息学计算方法在乳腺癌中识别了与化疗药物反应相关的DRlncs。并且通过共表达网络,功能富集等生物信息学方法刻画了DRlncs。利用公共数据,并结合实验分析。优势在于多维组学数据的整合和分析,对TCGA临床信息的独特挖掘有效识别了乳腺癌中关键的DRlncs,为临床治疗提供了指导意义。
网友评论