1:如何创建anaconda环境
(base) 代表基础环境。
conda create -n pytorch python=3.6
conda activate pytorch //激活这个环境
pip list //列出当前环境中有哪些包
-n 代表name名字,叫pytorch。
python=3.6 代表这个环境用到的一些包。
激活环境后,左侧括号(base)会变成(环境包名)。
2:pytorch安装
image.pngPackage windows选择conda,Linux选择pip。
Language 安装anaconda中创建的环境选择,自处选择python3.6。
CUDA 无显卡选择None,有显卡推荐选择9.2。
最后一步复制代码黏贴到新环境运行。
python
import torch
torch.cuda.is_available() //检验当前机器是否支持CPU
conda install pytorch torchvision torchaudio cpuonly -c pytorch
conda info --envs //查看当前创建的所有环境
activate your_envs //进入你的环境
pip install notebook//通过此命令将jupyter notebook 连接到新环境
//注意此处不要使用conda install nb_conda 会失败!!
TensorBoard的使用
在conda 中激活新环境 打开对应文件夹 映射端口
tensorboard --logdir=logs --port=6007
from torch.utils.tensorboard import SummaryWriter
s=SummaryWriter('logs')
s.close()
安装opencv
安装opencv失败,尝试切换墙内网络环境。
ERROR: Could not find a version that satisfies the requirement opencv-python (from versions: none) ERROR: No matching distribution found for opencv-python
安装命令
pip install opencv-python
导入
import cv2
transform工具的使用
导入
from torchvision import transforms
tensor_trans=transforms.ToTensor()
_t=tensor_trans(img)
print(_t)
内置__call__的使用
Resize() img PIL ==>img PIL size
tran_resize=transforms.Resize((12,12))
Compose 注意传入的是一个transfromd的数组[]
"""tran_resize_02=transforms.Resize((120,120))
tran_totensor=transforms.ToTensor()
trans_compose=transforms.Compose([tran_resize_02,tran_totensor])
img_resize_02=trans_compose(img)
print(img_resize_02.shape)"""
trans_compose=transforms.Compose([transforms.Resize((120,120)),transforms.ToTensor()])
img_resize_02=trans_compose(img)
print(img_resize_02.shape)
s.add_image('compose_test',img_resize_02,0)
dataset dataloader
import torchvision
from torch.utils.tensorboard import SummaryWriter
from PIL import Image
dataset_transfrom=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
])
train_set=torchvision.datasets.CIFAR10(root='./dataset',train=True,transform=dataset_transfrom,download=True)
test_set=torchvision.datasets.CIFAR10(root='./dataset',train=False,transform= dataset_transfrom,download=True)
s=SummaryWriter('logs')
for i in range(10):
img,target=train_set[i]
s.add_image('traindata_test',img,i)
s.close()
import torchvision
from torch.utils.tensorboard import SummaryWriter
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=torchvision.transforms.ToTensor())
# test_loder=DataLoader(test_data,4,True,0,True)
test_loder=DataLoader(dataset=test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=True)
img,target=test_data[0]
print(img.shape)
print(target)
s=SummaryWriter('logs')
for epoch in range(2):
step = 0
for i in test_loder:
imgs, targets = i
s.add_images('Epoch', imgs, step)
step = step + 1
s.close()
torchvison下有一些数据集,可以引用使用,避免下载数据
dilation 空洞卷积
每个之间差一
image.png
最大池化
最大池化作用
池化层的最直观的作用就是降维、减少参数量、去除冗余信息、对特征进行压缩、简化网络复杂度、减少计算量、减少内存消耗等等。
《动手学习深度学习》一书中还提到了这样一个作用: 缓解卷积层对位置的过度敏感性,实际上就是特征不变性。
#最大池化的操作
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
"""input=torch.randn([5,5])
print(input.shape)
input=torch.reshape(input,(-1,1,5,5))
print(input.shape)"""
dataset =torchvision.datasets.CIFAR10('./dataset',train=False,
transform=transforms.ToTensor(),
download=True
)
dataloader=DataLoader(dataset,batch_size=64)
class My_Module(nn.Module):
def __init__(self):
super(My_Module, self).__init__()
self.mex_pool=nn.MaxPool2d(kernel_size=3,stride=1
,padding=0,ceil_mode=True)
def forward(self,input):
output= self.mex_pool(input)
return output
s=SummaryWriter('logs')
m=My_Module()
"""output=m(input)
print(output.shape)"""
step=0
for data in dataloader:
imgs,targets=data
s.add_images('maxpool_test_before',imgs,step)
imgs=m(imgs)
s.add_images('maxpool_test',imgs,step)
step=step+1
pass
s.close()
非线性激活
RELU 小于0不取值,取0。
import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
"""input =torch.randn([2,2])
print(input)
print(input.shape)"""
dataset =torchvision.datasets.CIFAR10('./dataset',train=False,
transform=transforms.ToTensor(),
download=True
)
dataloader=DataLoader(dataset,batch_size=64)
"""input=torch.reshape(input,(-1,1,2,2))
print(input)
print(input.shape)"""
class My_Module(nn.Module):
def __init__(self):
super(My_Module, self).__init__()
self.rule=nn.ReLU(inplace=False)
self.sigmoid=nn.Sigmoid()
def forward(self,input):
output =self.sigmoid(input)
return output
m=My_Module()
"""output=m(input)
print(output)"""
s=SummaryWriter('logs')
step=0
for data in dataloader:
imgs,targets=data
imgs=m(imgs)
s.add_images('sigmoid_test_05',imgs,global_step=step)
step+=1
s.close()
正则化层
有一篇论文:采用正则化会加快训练的速度
线性层
import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
dataset =torchvision.datasets.CIFAR10('./dataset',train=False,
transform=transforms.ToTensor(),
download=True
)
dataloader=DataLoader(dataset,batch_size=64,drop_last=True)
class My_Module(nn.Module):
def __init__(self):
super(My_Module, self).__init__()
self.rule=nn.ReLU(inplace=False)
self.sigmoid=nn.Sigmoid()
self.linear=nn.Linear(196608,10)
def forward(self,input):
output =self.linear(input)
return output
m=My_Module()
s=SummaryWriter('logs')
step=0
for data in dataloader:
imgs,targets=data
print(imgs.shape)
imgs=torch.reshape(imgs,(1,1,1,-1))
print(imgs.shape)
imgs=m(imgs)
print(imgs.shape)
s.add_images('sigmoid_test_07',imgs,global_step=step)
step+=1
s.close()
几个卷积核就是几通道的。一个卷积核作用完RGB三个通道后会把得到的三个矩阵的对应值相加,也就是说会合并,所以一个卷积核产生一个通道。
import torch
from torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.tensorboard import SummaryWriter
class My_Module(nn.Module):
def __init__(self):
super(My_Module, self).__init__()
"""self.conv1=Conv2d(3,32,5,stride=1,padding=2)
self.maxpool1=MaxPool2d(2)
self.conv2=Conv2d(32,32,5,stride=1,padding=2)
self.maxpool2=MaxPool2d(2)
self.conv3=Conv2d(32,64,5,stride=1,padding=2)
self.maxpool3=MaxPool2d(2)
self.flatten=Flatten()
self.linear1=Linear(1024,64)
self.linear2=Linear(64,10)"""
self.model_1=nn.Sequential(
Conv2d(3, 32, 5, stride=1, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, stride=1, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, stride=1, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,input):
"""x=self.conv1(input)
x=self.maxpool1(x)
x=self.conv2(x)
x=self.maxpool2(x)
x=self.conv3(x)
x=self.maxpool3(x)
x=self.flatten(x)
x=self.linear1(x)
x=self.linear2(x)"""
x=self.model_1(input)
return x
m=My_Module()
print(m)
input=torch.ones((64,3,32,32))
output=m(input)
print(output.shape)
s=SummaryWriter('logs')
s.add_graph(m,input)
s.close()
Loss Functions
准备数据,加载数据,准备模型,设置损失函数,设置优化器,开始训练,最后验证,结果聚合展示
网友评论