定义
矩阵的奇异值分解(SVD)是指,将一个非零的 实矩阵 , , 表示为三个实矩阵相乘的形式:
其中, 是 阶正交矩阵, 是 阶正交矩阵, 是由降序排列的非负的对角线元素组成的 矩形对角矩阵, 满足
成称为矩阵的奇异值,的列向量称为左奇异向量,的列向量称为右奇异向量
ps:奇异值分解不要求矩阵是方阵,矩阵的奇异值分解可以看作是方阵对角化的推广
常用形式
以上给出的奇异值分解又称为完全奇异值分解,实际常用的是奇异值分解的紧凑形式和截断形式。
设有 实矩阵 , 其秩为 :
紧奇异值分解:
其中, 是 矩阵, 是 矩阵, 是 阶对角矩阵;矩阵 由完全奇异值分解中 的前 列、矩阵 由 的前 列、矩阵 由 的前 个对角线元素组成。紧奇异值分解的对角矩阵 的秩与原始矩阵 的秩相等。
截断奇异值分解:
其中,, 是 矩阵, 是 矩阵, 是 阶对角矩阵; 矩阵 由完全奇异值分解中 的前 列矩阵 由 的前 列、矩阵 由 的前 个对角线元素组成。对角矩阵的秩比原始矩阵 的秩低
性质
(1)设矩阵 的奇异值分解为 , 则以下关系成立:
(2)矩阵的奇异值分解中,左奇异向量,右奇异向量和奇异值存在一一对应的关系
(3)矩阵 的奇异值分解中,奇异值 是唯一的,而矩阵 和 不 是唯一的。
(4)矩阵 和 的秩相等, 等于正奇异值 的个数 包含重复的奇异值,奇异值都是非负的)
(5)矩阵 的 个右奇异向量 构成 的值域 的一组标准正交基
几何解释
从线性变换的角度理解奇异值分解:
矩阵 表示从 维空间 到 维 空间 的一个线性变换,
和 分别是各自空间的向量。
奇异值分解可以看作, 将线性变换转换为三个简单变换. 例如下图, 给出了原始空间的标准正交基 (红色与黄色),经过坐标系的旋转变换 、坐标轴的缩放变换 , 坐标系的旋转变换 ,得到和经过线性变换 等价的结果。
在这里插入图片描述
网友评论